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The influence of extreme cold events on mortality in the United States
Erik T. Smith ⁎, Scott C. Sheridan
Kent State University, PO Box 5190, Kent, OH 44242, United States of America
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Increased mortality during ECEs is most
likely during early winter.

• Warmer cities generally have a larger
increased RR during ECEs.

• Magnitude and duration of ECEs signifi-
cantly increase RR of mortality.

• Atlanta, Austin, and Nashville had larg-
est increased RRs of mortality during
ECEs.
⁎ Corresponding author.
E-mail address: esmit149@kent.edu (E.T. Smith).

https://doi.org/10.1016/j.scitotenv.2018.07.466
0048-9697/© 2018 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 11 June 2018
Received in revised form 25 July 2018
Accepted 31 July 2018
Available online 02 August 2018

Editor: P. Kassomenos
Many studies have analyzed the effects of extremeheat onhumanmortality, however fewer studies have focused
on the effects of cold relatedmortality due to the complicated nature of the lagged response. This study utilized a
Distributed Lag Non-Linear Model with a 30-day lag to determine the cumulative effects of extreme cold events
(ECEs) onmortality across 32 cities in the United States for the period of 1975–2010. ECEswere divided into spe-
cific categories based on duration, magnitude, and timing of occurrence. Mortality was divided into all-age mor-
tality as well asmortality of individuals N64 years old. The findings suggest a strong relationship between a city's
latitude as well as the timing of an ECE with mortality. Early season ECEs result in a much higher relative risk of
increased mortality, particularly in cities with higher meanwinter temperatures, while the RR of mortality of in-
dividuals N64 was consistently higher for each city. This study suggests early season ECEs should receive en-
hanced preparedness efforts as individuals may be particularly vulnerable when not acclimatized to extreme
cold.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

There is a well-documented connection between increases in
human mortality and extreme temperature events (e.g., Gasparrini
et al., 2015; Anderson and Bell, 2009; McMichael et al., 2008). Temper-
ature extremes, especially those lasting multiple days, put a strain on
cardiovascular, cerebrovascular, and respiratory systems (Gasparrini
et al., 2015). However, these impacts may be reduced with increased
preparedness and by limiting exposure (Barnett et al., 2012). This said,
understanding the spatial and temporal variability in extreme-
temperature vulnerability is key to any mitigation efforts. Research
has generally shown that locations ill-prepared for extreme tempera-
ture are more substantially impacted; for instance, cities in warmer cli-
mates tend to exhibit greater sensitivity to cold extremes, and vice versa
(e.g. Anderson and Bell, 2009, Analitis et al., 2008, Curriero et al., 2002,
Ng et al., 2014), although the magnitude varies from study to study. In
differentiating between the impacts of heat and cold, far more studies
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Table 1
Surface weather stations.

Weather station FAA location ID

Atlanta, Georgia ATL
Austin, Texas AUS
Birmingham, Alabama BHM
Boston, Massachusetts BOS
Buffalo, New York BUF
Chicago, Illinois Chicago Area
Cincinnati, Ohio CVG
Cleveland, Ohio CLE
Dallas, Texas DAL
Denver, Colorado DEN
Detroit, Michigan DET
Los Angeles, California LAX
Las Vegas, California LAS
Memphis, Tennessee MEM
Miami, Florida MIA
Minneapolis-Saint Paul, MN MSP
Nashville, Tennessee BNA
New Orleans, Louisiana MSY
New York, New York LGA
Oklahoma City, Oklahoma OKC
Orlando, Florida Orlando Area
Phoenix, Arizona PHX
Philadelphia, Pennsylvania PHL
Pittsburgh, Pennsylvania PIT
Portland, Oregon PDX
Raleigh, North Carolina RDU
San Diego, California SAN
Seattle, Washington SEA
San Francisco, California SFO
Salt-Lake City, Utah SLC
St. Louis, Missouri STL
Washington D.C. IAD
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have discussed the effects of extreme heat on mortality (Allen and Lee,
2014), since the impacts are relatively easy to model. The effects of ex-
treme cold on health have been studied less frequently, as the relation-
ship has been more difficult to model due to a greater lagged influence
(Allen and Sheridan, 2018), a result of there being a greater proportion
of winter-related mortality being indirectly associated with extreme
temperature (Kinney et al., 2015). Further, while the heat-mortality lit-
erature includes studies that look at heat waves as well as the overall
temperature-mortality relationship (Allen and Sheridan, 2018), thema-
jority studies that have examined extreme cold and mortality tend to
analyze the overall temperature-mortality relationship (Ng et al.,
2014; Ma et al., 2014), with few analyzing cold waves explicitly. Those
that have defined cold waves (e.g. Barnett et al., 2012, Rocklöv et al.,
2014) have utilized absolute percentiles of temperature as criteria for
their definition.

There is no formally accepted definition of an extreme temperature
event, which has thus led to myriad different definitions. The classifica-
tion a discrete cold event requires both a duration and magnitude
criteria. The magnitude is often determined via anomalies, percentiles,
or standard deviations. Wheeler et al. (2011) used standardized anom-
alies to develop a climatology of cold air outbreaks (CAOs) across North
America. Cellitti et al. (2006) used the top 30 coldest 5-day anomalies
from 17 stations in the eastern U.S. to classify CAOs. Vavrus et al.
(2006) defined the magnitude and duration of CAOs by using general
circulation models to look at surface temperatures two standard devia-
tions below the December through February mean for 2 consecutive
days. Barnett et al. (2012) used the 95th–99th percentiles as thresholds
for cold waves which lasted a minimum of two consecutive days.

As mentioned, the increased mortality associated with extreme cold
can persist for several or more weeks (Anderson and Bell, 2009). Be-
cause of this lagged response of mortality with extreme cold, cumula-
tive measures are needed to fully encapsulate the impacts, however
few studies agree on the ideal lag to incorporate, and the seasonal
cycle of mortality can be a substantial confounder in terms of using
any lag (Kinney et al., 2015). Lee (2015) showed that dry cool weather
patterns resulted in a significant increase of cardiovascular relatedmor-
tality during the 2 weeks following the event. Analitis et al. (2008)
found that the effects of cold could last up to 23 days and affected
warmer cities more than colder cities. Anderson and Bell (2009) found
that cold waves resulted in increased mortality for up to 25 days. The
relative risk has been shown to be particularly useful for determining
the cumulative risk of increased mortality during extreme cold. Recent
studies (Ng et al., 2014; Ma et al., 2014; Barnett et al., 2012) have uti-
lized the Distributed Lag Non-Linear Model (DLNM), first developed
by Gasparrini (2011), to examine cumulative impacts of extreme tem-
peratures on mortality percentiles.

It is important to fully understand the impacts of winter weather on
humanhealth, aswith demographic changes, thepercentage of the pop-
ulation most vulnerable to extreme temperature events will increase
more rapidly. Moreover, climate change may result in more extreme
cold events even with an overall warming, and the overall notion that
a warmer world would lead to a decrease in winter mortality has been
questioned (Staddon et al., 2014). To contribute to this understanding,
in this studywe assess the association between discrete ECEs in 32 cities
across the United States for the period 1975–2010, sub-setting the im-
pacts of ECEs by duration, magnitude, location, age, and time of year.
ECEs are defined in relative, not absolute terms, based on a city's climate
and seasonality.

2. Data and methods

2.1. Extreme cold events

Quality controlled daily maximum andminimum temperature were
obtained from NOAA for the surface weather stations located at the pri-
mary airports of the 32 metropolitan areas used in this study (Table 1).
Threaded Station Extremes (ThreadEX stations), listed as Area Stations
in Table 1, were used for Chicago, IL and Orlando, FL due to significant
amounts of missing data. The temperature data were gathered for the
months of November through March, from 1975 to 2010, and were
used to calculate the magnitude and duration of the ECEs. The criteria
used to define an ECE comes from Smith and Sheridan (2018) in
which themean dailymaximumandminimum temperature is required
to be at least 1.25 σ below the 35-year climatological mean for a mini-
mum of 5 consecutive days.

For each city, the mean and standard deviation of temperature for
each day from 1 November to 31 March over the 1975–2010 period
was calculated. To smooth day-to-day fluctuations, a 2nd order polyno-
mial was fit to the mean and standard deviation values; it is these fitted
values that are used as the reference climatological mean and standard
deviation for each day. This definition thus identifies ECE that represent
extremely cold conditions relative to a given time of year in a given city.
Thus, it may account for seasonal acclimatization and the seasonal var-
iability of mortality associated with early season ECEs (Barnett et al.,
2012). Individuals ill-acclimatized to extreme coldmay bemore heavily
impacted by an early season ECE that features a dramatic change in tem-
perature following a period of higher temperatures.

2.2. Mortality data

According to Analitis et al. (2008) and Anderson and Bell (2009),
cold waves may result in increased mortality for up to 25 days after
the onset. However, multiple cities experienced an increased RR ofmor-
tality beyond 25 days, thus a 30-day lag was used to explore the RR of
increased mortality after the onset of an ECE. Of all mortality datasets,
all-cause total mortality is the least influenced by limitations (Dixon
et al., 2005), therefore, all-cause mortality is used instead of specific
cause mortality to eliminate the subjectivity of the medical examiner
while also providing a larger sample size. All-cause mortality data
were obtained from the National Center for Health Statistics (NCHS)



Table 2
Number of ECEs per category.

City ECEs ECE days Short duration Long duration Mod. magnitude High magnitude Early season Late season

Atlanta 14 89 11 3 11 3 6 8
Austin 16 102 14 2 13 3 7 9
Birmingham 11 70 9 2 8 3 4 7
Boston 20 126 18 2 18 2 8 12
Buffalo 19 133 15 4 18 1 7 12
Chicago 32 234 22 10 24 8 14 18
Cincinnati 29 190 24 5 26 3 8 21
Cleveland 27 189 19 8 23 4 12 15
Dallas 19 127 15 4 14 5 5 14
Denver 33 224 25 8 23 10 13 20
Detroit 25 171 19 6 22 3 8 17
Los Angeles 12 75 10 2 11 1 8 4
Las Vegas 22 165 13 9 16 6 10 12
Memphis 20 134 15 5 15 5 6 14
Miami 33 215 25 8 27 6 16 17
Minneapolis 33 238 21 12 25 8 16 17
Nashville 14 96 11 3 12 2 3 11
New Orleans 13 81 11 2 10 3 5 8
New York 31 195 26 5 25 6 14 17
Oklahoma City 21 148 16 5 17 4 8 13
Orlando 22 138 19 3 19 3 11 11
Philadelphia 27 190 21 6 22 5 10 17
Phoenix 27 169 21 6 18 9 19 8
Pittsburgh 19 131 16 3 16 3 4 15
Portland 31 240 18 13 22 9 19 12
Raleigh 9 54 8 1 9 0 3 6
San Diego 9 54 8 1 8 1 6 3
Seattle 32 242 20 12 16 16 17 15
San Francisco 22 138 18 4 18 4 13 9
Salt-Lake City 32 243 20 12 25 7 15 17
St. Louis 28 206 22 6 23 5 12 16
Washington D.C. 22 153 18 4 19 3 9 13
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for the years of 1975 through 2010 for 32 Metropolitan Statistical Areas
(MSA) across the eastern U.S. The data were divided into two age cate-
gories, 1.) all-agemortality and 2.)mortality of individuals N64 years old
to further delineate the impacts of ECEs of different age groups. Though
mortality data was not available for November–December 1974 and
January–March 2011, the winter seasons of 1974–1975 and
2010–2011 are included in the study to maximize the number of sea-
sons in the sample. The 1974–1975 and 2010–2011 winter seasons
are not included in the discussion of ECE seasonal trends for this reason.
Table 3
Number of ECEs, mean duration of ECEs in days, and the mean z-score of ECEs by month.

Month # ECEs Mean duration Mean
Z-score

November 112 7 −1.65
December 204 8 −1.66
January 212 7 −1.60
February 108 7 −1.60
March 88 6 −1.57
2.3. Distributed Lag Non-Linear Model

The day-to-day risk of increased mortality during extreme cold is
generally small compared to heat. This may in part be the reason for
numerous studies that show insignificant impacts from extreme cold
events on mortality (Dixon et al., 2005). However, the cumulative RR
of increased mortality over an extended period following an ECE can
be measured through use of the distributed lag nonlinear model
(DLNM; Gasparrini, 2011). The DLNM accounts for the non-
linearity of the data and the delayed effects of ECEs on mortality by
determining the change in mortality during a specified period after
the ECE. Sincemortality resembles a seasonal cycle in that the annual
peak occurs during the winter (Sheridan and Dixon, 2016), the
DLNM normalizes the data by creating a crossbasis, or a baseline of
expected mortality on any given day based on prior observations
(Gasparrini, 2011). The daily mortality was assumed to follow a
quasi-Poisson distribution and the data was fit with a non-natural
penalized spline (B-spline) with 7 degrees of freedom (df) for each
of the 36 years of data to account for seasonality and trends. Ng
et al. (2014) found that using N3 df for the lag introduced an artificial
increase in RR, thus 3 df were applied to the 30-day lag used for mor-
tality analysis.
In addition to the overall impacts of ECEs, to examine the impacts of
duration, magnitude, and timing of occurrence, ECEs were divided into
subset categories:

1.) -1.25 ≥ σ N −1.75 (‘moderate’), σ ≤ −1.75 (‘extreme’)
2.) Duration ≤8 days (‘short’), Duration N8 days (‘long’), and
3.) November–December (‘early season’), January–March (‘late

season’)

for bothmortality groups (all agemortality andmortality N64). All mor-
tality analyses were performed with the R Project for Statistical Com-
puting (3.4.3) and utilized the DLNM, DataCombine, and Splines
packages. The two functions regarding the DLNM parameters are as fol-
lows:

basis:offb−crossbasisðmortse; lag ¼ 30; argvar ¼ list fun ¼ }integer}
� �

;

arglag ¼ list fun ¼ }poly};degree ¼ 3
� �

Þ;

modelb−glm ðmortOldMort � basis:off þ ps
�
mortTime;7 � 36Þ;

family ¼ quasipoissonðÞ;mortÞ;



Fig. 1. Number of ECEs per year for all cities.
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3. Results and discussion

The total number of ECEs and ECE days, along with the number of
ECEs per ECE category are shown for each city in Table 2. As intended,
very few ECEs fall into the high magnitude (Z-score ≤ −1.75 σ) or
long duration (≥8 days) category, thus helping to delineate between
ECEs and the most extreme ECEs. The number of ECEs per month
along with the average duration and magnitude by month are shown
in Table 3. January andDecember experience themost ECEs,with nearly
60% of the total number of ECEs occurring during this 2-month period.
December features the longest average duration ECEs of 8 days while
March ECEs average 6 days in duration. The magnitude of ECEs tends
Fig. 2. Extreme Cold Eve
to be higher toward the front end of the winter season, though the dif-
ference between November andMarch is only 0.08 σ. The total number
of ECEs per year for all cities decreased throughout the study period
(Fig. 1). The winters from 1976 through 1986 accounted for 326 ECEs,
or 45% of the total number of ECEs during the 37 winter seasons in the
study. The most recent decade of the study, 2000–2010, accounted for
only 116 ECEs or 16% of the total number of events.

The numbers of ECEs was not evenly distributed among the cities.
Cities with smaller temperature variations, such as Miami or Seattle,
typically experienced more ECEs during the study period while in-
land southern cities experienced fewer ECEs (Fig. 2). Overall, results re-
vealed ECEs generally increased the RR of all agemortalitywith 11 cities
nts (ECEs) by city.
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having a significant increase (Table 4). An additional slight increase in
RR was observed when only examining mortality N64 with 10 cities
having a significant RR (Table 5). Western U.S. cities experienced a
much less variable RR for both age groups and all ECE categories as com-
pared to cities in the eastern U.S. This may partially be attributed to the
lower variation in temperatures for cities on the west coast and the
Table 4
Relative Risk and confidence intervals for all-age, all-cause mortality for each category organiz
moderate magnitude (z-score N−1.75), highmagnitude (z-score ≤−1.75), short duration (du
ber), and late season ECEs (January–March). Statistically significant RR values are denoted in b

City MWT (°C) All ECEs
All age

Short duration Long durat

Minneapolis −8 1.03
[0.96–1.10]

1.00
[0.90–1.11]

1.04
[0.96–1.13]

Chicago −3 1.10
[1.06–1.14]

0.95
[0.90–1.00]

1.21
[1.16–1.27]

Buffalo −3 1.02
[0.92–1.12]

0.94
[0.82–1.09]

1.11
[0.95–1.29]

Detroit −2 1.08
[1.02–1.14]

1.03
[0.96–1.12]

1.13
[1.04–1.23]

Cleveland −2 1.05
[0.98–1.13]

0.98
[0.89–1.09]

1.10
[1.00–1.20]

Pittsburgh −1 1.03
[0.97–1.08]

0.95
[0.88–1.03]

1.08
[1.01–1.15]

Salt-Lake City 0 1.02
[0.92–1.14]

0.92
[0.79–1.08]

1.09
[0.95–1.25]

Boston 0 0.98
[0.91–1.04]

0.91
[0.84–0.98]

1.18
[1.03–1.34]

Cincinnati 0 1.02
[0.95–1.10]

0.93
[0.84–1.02]

1.17
[1.04–1.32]

Denver 1 0.98
[0.90–1.07]

1.02
[0.92–1.13]

0.95
[0.84–1.07]

St. Louis 1 1.02
[0.97–1.08]

0.87
[0.80–0.95]

1.13
[1.05–1.22]

Philadelphia 2 1.11
[1.07–1.16]

1.06
[1.00–1.13]

1.20
[1.13–1.28]

New York 2 1.02
[0.99–1.06]

0.99
[0.95–1.04]

1.05
[1.00–1.10]

Washington D.C. 3 1.04
[0.97–1.11]

0.97
[0.88–1.06]

1.14
[1.03–1.26]

Oklahoma City 4 0.95
[0.84–1.08]

0.93
[0.80–1.08]

1.02
[0.86–1.22]

Nashville 4 1.22
[1.07–1.39]

0.95
[0.81–1.13]

1.74
[1.42–2.13]

Portland 6 0.96
[0.88–1.05]

0.97
[0.86–1.09]

0.92
[0.79–1.08]

Seattle 6 1.13
[1.06–1.19]

1.17
[1.06–1.28]

1.08
[1.01–1.17]

Raleigh 6 1.05
[0.79–1.39]

1.09
[0.80–1.49]

0.83
[0.40–1.72]

Memphis 6 0.94
[0.85–1.03]

0.87
[0.77–0.98]

1.07
[0.90–1.28]

Atlanta 7 1.26
[1.14–1.39]

1.41
[1.25–1.59]

1.02
[0.87–1.20]

Birmingham 7 1.06
[0.91–1.23]

1.07
[0.90–1.27]

1.01
[0.77–1.34]

Dallas 9 1.20
[1.10–1.31]

1.00
[0.90–1.10]

1.42
[1.26–1.61]

Las Vegas 9 1.22
[1.03–1.45]

1.34
[1.09–1.64]

1.00
[0.70–1.42]

San Francisco 11 1.07
[0.99–1.15]

1.11
[1.01–1.21]

0.98
[0.87–1.12]

Austin 11 1.16
[0.95–1.42]

0.94
[0.73–1.21]

1.51
[1.12–2.04]

New Orleans 12 1.10
[0.97–1.25]

1.01
[0.86–1.19]

1.34
[1.06–1.69]

Phoenix 14 1.03
[0.94–1.12]

0.90
[0.81–1.00]

1.34
[1.15–1.56]

Los Angeles 14 1.06
[1.01–1.10]

1.07
[0.99–1.17]

1.04
[1.00–1.09]

San Diego 14 1.13
[0.98–1.30]

1.11
[0.95–1.28]

1.29
[0.88–1.89]

Orlando 17 1.23
[1.10–1.37]

1.26
[1.11–1.43]

1.11
[0.92–1.34]

Miami 21 1.17
[1.12–1.23]

1.23
[1.16–1.30]

1.07
[0.99–1.15]
complex topographic influenced, climates of Denver and Salt Lake
City. It may also be a result of a higher frequency of synoptic-scale win-
ter precipitation events across the eastern U.S. resulting in extreme cold
in the wake of the event. Further subdividing the ECEs into duration,
magnitude, and time of season categories resulted in several distinct
patterns.
ed by mean winter temperature (MWT). The RR categories from left to right are: All ECEs,
ration b 8 days), long duration (duration ≥ 8 days), early season ECEs (November–Decem-
old italic.

ion Mod. magnitude High magnitude Early season Late season

1.07
[0.99–1.16]

0.94
[0.84–1.05]

1.14
[1.04–1.25]

0.92
[0.84–1.00]

1.04
[0.99–1.09]

1.20
[1.13–1.27]

1.25
[1.19–1.31]

0.94
[0.90–0.99]

1.03
[0.93–1.15]

0.94
[0.70–1.27]

1.13
[0.97–1.31]

0.94
[0.82–1.07]

1.04
[0.97–1.11]

1.14
[1.03–1.26]

1.18
[1.08–1.28]

1.00
[0.93–1.07]

1.05
[0.97–1.14]

1.05
[0.91–1.20]

1.16
[1.05–1.29]

0.95
[0.86–1.04]

1.02
[0.95–1.09]

1.04
[0.97–1.12]

1.03
[0.96–1.10]

1.02
[0.94–1.11]

1.01
[0.89–1.15]

1.04
[0.86–1.25]

0.99
[0.86–1.15]

1.05
[0.90–1.22]

0.98
[0.91–1.05]

0.95
[0.81–1.11]

1.00
[0.90–1.11]

0.96
[0.88–1.04]

0.97
[0.89–1.06]

1.26
[1.07–1.50]

1.17
[1.03–1.32]

0.94
[0.86–1.04]

1.05
[0.95–1.16]

0.88
[0.76–1.01]

0.96
[0.84–1.10]

1.00
[0.91–1.11]

0.95
[0.89–1.01]

1.29
[1.16–1.43]

1.12
[1.05–1.21]

0.89
[0.82–0.97]

1.14
[1.09–1.20]

1.03
[0.95–1.11]

1.20
[1.11–1.30]

1.08
[1.02–1.13]

1.00
[0.96–1.05]

1.05
[0.99–1.10]

1.07
[1.02–1.13]

0.98
[0.93–1.02]

0.98
[0.90–1.06]

1.15
[1.02–1.29]

1.09
[0.99–1.21]

0.99
[0.91–1.08]

0.91
[0.79–1.06]

1.07
[0.89–1.28]

1.06
[0.91–1.23]

0.87
[0.73–1.04]

1.10
[0.94–1.29]

1.49
[1.17–1.90]

1.74
[1.42–2.13]

0.95
[0.81–1.13]

0.89
[0.79–0.99]

1.14
[0.98–1.33]

0.98
[0.88–1.09]

0.89
[0.75–1.05]

1.15
[1.05–1.26]

1.10
[1.02–1.19]

1.08
[1.00–1.16]

1.19
[1.09–1.31]

1.05
[0.79–1.39]

0.65
[0.32–1.32]

0.64
[0.38–1.08]

1.29
[0.92–1.81]

0.89
[0.79–1.00]

1.07
[0.90–1.27]

1.21
[1.04–1.40]

0.80
[0.70–0.90]

1.14
[1.01–1.27]

1.78
[1.45–2.19]

1.79
[1.52–2.11]

1.02
[0.90–1.15]

1.05
[0.89–1.24]

1.09
[0.78–1.52]

1.17
[0.94–1.46]

0.98
[0.80–1.19]

1.08
[0.97–1.20]

1.23
[1.11–1.38]

1.30
[1.16–1.46]

1.03
[0.93–1.14]

1.20
[1.01–1.43]

1.87
[0.68–5.10]

1.29
[1.06–1.57]

1.02
[0.74–1.40]

1.02
[0.94–1.11]

1.17
[1.02–1.34]

0.98
[0.90–1.07]

1.22
[1.08–1.37]

1.08
[0.86–1.35]

1.32
[0.93–1.88]

1.38
[1.08–1.77]

0.89
[0.68–1.18]

1.02
[0.87–1.18]

1.35
[1.06–1.71]

1.44
[1.20–1.72]

0.82
[0.67–0.99]

0.90
[0.80–1.00]

1.34
[1.15–1.55]

1.18
[1.01–1.39]

0.97
[0.87–1.07]

1.02
[0.96–1.08]

1.08
[1.02–1.15]

1.01
[0.95–1.06]

1.11
[1.05–1.18]

1.10
[0.95–1.27]

1.55
[0.94–2.55]

1.12
[0.95–1.33]

1.13
[0.90–1.42]

1.21
[1.07–1.36]

1.23
[0.98–1.54]

1.20
[1.00–1.43]

1.28
[1.11–1.48]

1.20
[1.14–1.27]

1.09
[1.00–1.19]

1.27
[1.18–1.36]

1.12
[1.05–1.20]



347E.T. Smith, S.C. Sheridan / Science of the Total Environment 647 (2019) 342–351
3.1. RR and ECE duration

For both age categories, the RR was generally higher in cities with
warmer MWTs for short duration ECEs. A much higher increased RR
was evident in long duration ECEs, especially in cities with warmer
MWT. The smaller increase in RR for cities with colder MWTs during
Table 5
Relative Risk and confidence intervals for all-cause mortality N64 years old for each category or
ECEs, moderate magnitude (z-score N−1.75), highmagnitude (z-score ≤−1.75), short duratio
cember), and late season ECEs (January–March). Statistically significant RR values are denoted

City MWT (°C) All ECEs
Age N 64

Short duration Long durati

Minneapolis −8 1.06
[0.98–1.15]

1.01
[0.90–1.14]

1.09
[1.00–1.20]

Chicago −3 1.11
[1.06–1.16]

0.95
[0.89–1.01]

1.22
[1.16–1.29]

Buffalo −3 1.01
[0.90–1.13]

0.88
[0.74–1.04]

1.16
[0.97–1.38]

Detroit −2 1.07
[1.00–1.14]

1.02
[0.93–1.12]

1.12
[1.02–1.24]

Cleveland −2 1.06
[0.97–1.15]

1.01
[0.90–1.14]

1.08
[0.97–1.21]

Pittsburgh −1 1.05
[0.99–1.12]

0.97
[0.89–1.06]

1.11
[1.03–1.20]

Salt-Lake City 0 1.01
[0.88–1.15]

0.93
[0.77–1.13]

1.06
[0.90–1.25]

Boston 0 0.94
[0.88–1.02]

0.89
[0.82–0.97]

1.08
[0.93–1.26]

Cincinnati 0 1.05
[0.96–1.14]

0.94
[0.83–1.05]

1.23
[1.07–1.41]

Denver 1 1.00
[0.91–1.11]

1.06
[0.93–1.20]

0.93
[0.81–1.08]

St. Louis 1 1.03
[0.97–1.10]

0.82
[0.74–0.90]

1.21
[1.11–1.31]

Philadelphia 2 1.12
[1.07–1.18]

1.06
[0.99–1.14]

1.22
[1.13–1.32]

New York 2 1.04
[1.00–1.08]

0.99
[0.94–1.05]

1.08
[1.02–1.15]

Washington D.C. 3 1.06
[0.98–1.15]

0.99
[0.89–1.11]

1.15
[1.01–1.31]

Oklahoma City 4 0.91
[0.78–1.05]

0.88
[0.74–1.06]

1.00
[0.81–1.24]

Nashville 4 1.22
[1.04–1.44]

0.88
[0.72–1.09]

1.94
[1.51–2.49]

Portland 6 0.99
[0.89–1.09]

1.02
[0.89–1.17]

0.91
[0.76–1.09]

Seattle 6 1.16
[1.08–1.24]

1.15
[1.03–1.28]

1.14
[1.04–1.25]

Raleigh 6 0.99
[0.69–1.41]

1.00
[0.68–1.47]

0.88
[0.35–2.24]

Memphis 6 0.93
[0.83–1.05]

0.83
[0.71–0.96]

1.19
[0.95–1.48]

Atlanta 7 1.32
[1.17–1.50]

1.52
[1.30–1.77]

1.00
[0.82–1.23]

Birmingham 7 1.13
[0.94–1.35]

1.10
[0.89–1.36]

1.16
[0.82–1.63]

Dallas 9 1.23
[1.11–1.36]

0.98
[0.87–1.11]

1.52
[1.31–1.76]

Las Vegas 9 1.22
[0.99–1.51]

1.32
[1.03–1.71]

1.00
[0.64–1.55]

San Francisco 11 1.08
[0.99–1.18]

1.12
[1.01–1.24]

1.00
[0.86–1.16]

Austin 11 1.29
[1.02–1.64]

0.98
[0.72–1.32]

1.82
[1.27–2.60]

New Orleans 12 1.11
[0.94–1.30]

0.95
[0.77–1.16]

1.52
[1.14–2.03]

Phoenix 14 0.93
[0.84–1.04]

0.78
[0.69–0.89]

1.32
[1.09–1.59]

Los Angeles 14 1.06
[1.01–1.12]

1.10
[1.00–1.22]

1.04
[0.99–1.10]

San Diego 14 1.07
[0.91–1.26]

1.05
[0.88–1.25]

1.21
[0.77–1.92]

Orlando 17 1.29
[1.13–1.47]

1.25
[1.08–1.45]

1.30
[1.04–1.64]

Miami 21 1.18
[1.12–1.25]

1.23
[1.15–1.32]

1.09
[1.00–1.19]
long duration ECEs may suggest these cities are better prepared to
deal with long periods of extreme cold as opposed to citieswithwarmer
MWTs. It may also be a result of these cities having experienced cold
prior to the beginning of the study period (November), as they are
more likely to be impacted by a southward propagating polar jet prior
to November, thus resulting in a more acclimatized population by
ganized by mean winter temperature (MWT). The RR categories from left to right are: All
n (duration b8 days), long duration (duration ≥ 8 days), early season ECEs (November–De-
in bold italic.

on Mod. magnitude High magnitude Early season Late season

1.10
[1.00–1.21]

0.99
[0.86–1.13]

1.21
[1.09–1.35]

0.92
[0.83–1.02]

1.03
[0.98–1.09]

1.23
[1.15–1.32]

1.27
[1.19–1.34]

0.94
[0.89–1.00]

1.03
[0.91–1.16]

0.90
[0.63–1.29]

1.14
[0.96–1.36]

0.91
[0.78–1.06]

1.02
[0.94–1.11]

1.14
[1.01–1.28]

1.20
[1.09–1.33]

0.97
[0.89–1.06]

1.06
[0.96–1.17]

1.05
[0.90–1.23]

1.18
[1.05–1.33]

0.94
[0.84–1.06]

1.05
[0.97–1.13]

1.06
[0.97–1.15]

1.04
[0.97–1.13]

1.07
[0.97–1.17]

0.97
[0.83–1.14]

1.06
[0.84–1.33]

1.02
[0.86–1.22]

0.99
[0.82–1.19]

0.96
[0.88–1.04]

0.84
[0.70–1.01]

0.97
[0.86–1.10]

0.91
[0.83–1.01]

0.98
[0.88–1.08]

1.39
[1.14–1.69]

1.25
[1.08–1.44]

0.94
[0.84–1.06]

1.09
[0.96–1.23]

0.86
[0.73–1.02]

1.06
[0.90–1.24]

0.97
[0.86–1.10]

0.93
[0.87–1.00]

1.39
[1.23–1.57]

1.18
[1.09–1.29]

0.83
[0.75–0.92]

1.17
[1.11–1.24]

0.98
[0.89–1.08]

1.26
[1.15–1.38]

1.06
[1.00–1.12]

1.01
[0.96–1.06]

1.07
[1.01–1.14]

1.10
[1.04–1.17]

0.98
[0.93–1.04]

1.01
[0.91–1.11]

1.16
[1.00–1.34]

1.08
[0.95–1.23]

1.04
[0.93–1.15]

0.86
[0.72–1.02]

1.05
[0.84–1.32]

1.00
[0.83–1.21]

0.84
[0.68–1.03]

1.03
[0.84–1.26]

1.73
[1.29–2.32]

1.94
[1.51–2.49]

0.88
[0.72–1.09]

0.92
[0.81–1.04]

1.16
[0.97–1.39]

1.01
[0.89–1.15]

0.91
[0.75–1.11]

1.18
[1.05–1.31]

1.13
[1.03–1.24]

1.14
[1.04–1.25]

1.18
[1.06–1.31]

0.99
[0.69–1.41]

0.52
[0.22–1.25]

0.48
[0.25–0.90]

1.37
[0.89–2.11]

0.86
[0.74–0.99]

1.15
[0.93–1.42]

1.36
[1.13–1.63]

0.73
[0.62–0.85]

1.16
[1.00–1.33]

2.04
[1.57–2.65]

2.06
[1.68–2.52]

1.00
[0.86–1.16]

1.10
[0.90–1.34]

1.22
[0.81–1.85]

1.33
[1.01–1.74]

0.99
[0.77–1.27]

1.06
[0.93–1.21]

1.28
[1.12–1.46]

1.39
[1.21–1.60]

1.00
[0.88–1.13]

1.23
[0.99–1.52]

0.87
[0.22–3.50]

1.29
[1.01–1.65]

1.02
[0.69–1.51]

1.03
[0.93–1.14]

1.18
[1.01–1.38]

1.01
[0.91–1.12]

1.19
[1.04–1.37]

1.15
[0.88–1.50]

1.58
[1.04–2.42]

1.50
[1.12–2.02]

1.01
[0.73–1.41]

0.97
[0.80–1.18]

1.47
[1.10–1.97]

1.51
[1.21–1.89]

0.77
[0.60–0.98]

0.77
[0.68–0.88]

1.30
[1.09–1.56]

1.15
[0.95–1.39]

0.85
[0.75–0.96]

1.03
[0.96–1.11]

1.09
[1.01–1.16]

1.00
[0.94–1.07]

1.14
[1.06–1.22]

1.06
[0.89–1.25]

1.25
[0.68–2.31]

1.11
[0.91–1.36]

0.99
[0.76–1.30]

1.24
[1.08–1.43]

1.34
[1.02–1.76]

1.18
[0.96–1.47]

1.40
[1.18–1.66]

1.21
[1.13–1.28]

1.10
[1.00–1.21]

1.28
[1.18–1.39]

1.13
[1.05–1.22]
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Fig. 3. Relative Risk (RR) by city withmeanwinter temperature (MWT) increasing from left to right. Red bars are statistically significant RRs. Hollowmarkers for RDU represent 0 ECEs for
the category. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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November. Nashville and Austin experienced the largest increased
RR for long duration ECEs, with Nashville having an increased RR of
1.74 [1.42–2.13] for all-age mortality and 1.94 [1.51–2.49] for mor-
tality N64 and Austin having an increased RR of 1.51 [1.12–2.04] for
all-age mortality and 1.82 [1.27–2.60] for mortality N64. It should
be noted that the RR for Atlanta, Las Vegas, Orlando, and Miami de-
creases from short duration to long duration ECEs. Atlanta and Or-
lando have relatively small sample sizes (3 long duration ECEs),
thus may partially explain the decrease in RR for long duration
events. Miami and Las Vegas have relatively large sample sizes (8
and 9 long duration ECEs), therefore the decrease in RR may be a re-
sult of changing demographics or relatively low magnitude ECEs.
Moreover, the occurrence of long duration ECEs may have played a
part in the decreased RR for these cities. Long duration ECEs that
Early Season

Fig. 4. RR for all-age mortality associated with
occur late in the winter, or following an early season ECE, may ulti-
mately lower the susceptible population and result in a reduced RR.
This concept is further explored in Section 3.3.

3.2. RR and ECE magnitude

The importance of categorizing ECEs is further supported by the dif-
ference in the RR betweenmoderate and highmagnitude ECEs. Though
moderate ECEs resulted in a significantly increased RR for six cities (four
cities for mortality N64), high magnitude ECEs generally had much
larger RRs with 13 cities being significant for all-age mortality and 16
significant for mortality N64. Furthermore, there is a clear relationship
between the cities MWT and the RR as cities with warmer MWTs tend
to have higher RRs during high magnitude ECEs (Fig. 3). Particularly
Late Season

early season and late season ECEs by city.



349E.T. Smith, S.C. Sheridan / Science of the Total Environment 647 (2019) 342–351
elevated RRs occurred during high magnitude ECEs in Nashville (1.49
[1.17–1.90]) and Atlanta (1.78 [1.45–2.19]) for all-age mortality with
much higher RRs evident when only considering the mortality of indi-
viduals N64 in Nashville (1.73 [1.29–2.32]) and Atlanta (2.04
[1.57–2.65]). Of the colder MWT cities, Chicago, Cincinnati, and St.
Louis had the highest increased RR with values near 1.30. High magni-
tude ECEs resulted in the largest increased RR for several cold MWT cit-
ies, however, more cities experienced a significant increase in RR during
early season ECEs.
Fig. 5. On the left: Relative risk of all-cause mortality during early season ECEs for Atlanta, C
minimum (gray line) temperatures and the respective temperature 1.5σ below themean daily
3.3. RR and early vs. late season ETEs

Dividing ECEs into early and late season events reveals the strongest
relationship to mortality (Fig. 3 & Fig. 4) with 18 cities having signifi-
cantly increased RRs during early season ECEs for both age categories
(Tables 4 and 5). Late season ECEs result in much fewer significant in-
creases in RR for all-age mortality (6 cities significant) and mortality
N64 (5 cities significant). Furthermore, early season ECEs generally
have a much longer period of increased mortality following the ECE
hicago, New Orleans, and Phoenix. On the right: Mean daily maximum (black line) and
maximum temperature (black dotted line) andminimum temperature (gray dashed line).
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onset, as opposed to late season ECEs. The highest RRs occur in cities
with warmer MWTs, further suggesting that cities with warmer
MWTs are particularly vulnerable to ECEs. While colder MWT cities
generally have a lower RR than warmer MWT cities during early sea-
son ECEs, the number of significant increased RRs is larger than from
high magnitude ECEs. The lower RRs in cities with colder MWTs may
be a result of an earlier onset of cold weather, acclimatizing the pop-
ulation before the study period begins in November. It may also be
attributed to better preparedness in these cities as they typically ex-
perience a larger number of ECEs. Nonetheless, the large number of
significantly increased RRs for most cities suggests that early season
ECEs may be particularly impactful on populations not yet acclima-
tized to extreme cold. Cities such as Orlando, Miami, Los Angeles,
San Francisco, and Seattle still had significant increased RRs during
late season ECEs, with the RR increasing from early season to late
season for all cities but Miami. These cities have warmer climates,
with little variation in temperature due to maritime influences,
thus it requires an idealized circulation pattern to result in an ECE
in these locations. Cold fronts that propagate southeastward toward
Orlando and Miami are typically moderated by the warm waters of
the Gulf of Mexico. Furthermore, the southward extent of these
two cities requires a potent cold front with a circulation pattern ca-
pable of sustaining anomalous cold in a heavily maritime influenced
region. These conditions are much more likely during the middle of
winter when the polar vortex is more capable of displacing large,
cold air masses across the eastern U.S. Los Angeles, San Francisco,
and Seattle are impacted by ECEs differently as cold air masses are
often a result of unusually strong surface high pressure in and
south of the Gulf of Alaska (Grotjahn and Zhang, 2017). An air mass
capable of sustaining the southward cold air advection must be in
place in these regions to prevent moderation, thus late season ECEs
may favor mid-winter on the western coast of the U.S.

3.4. Discussion

The results show that extreme low temperatures should be consid-
ered relative to the climate as opposed to using a single temperature
threshold for all cities. This is represented in Fig. 5 which shows how
the cumulative increased RR differs for all-age mortality during early
season ECEs for four cities with vastly different climates. The increased
RR for Atlanta during early season ECEs (November–December) is
1.79, yet the daily maximum temperature of an ECE 1.5σ below the cli-
matological average would be between 5 °C and 15 °C. Conversely, Chi-
cago would expect a daily maximum temperature between−10 °C and
5 °C for a similar magnitude ECE, yet the increased RR for early season
ECEs is 1.25. This further suggests that human mortality may be more
dependent on a city's climate than absolute temperature thresholds.

Similar to (Sheridan and Dixon, 2016), this study finds that the el-
derly population (mortality N64) are more prone to the impacts of ex-
treme temperatures as the RR for mortality N64 was consistently
higher than that of all-agemortality. The RR of increased all-agemortal-
ity during early season ECEs was 1.74 for Nashville and 1.79 for Atlanta
(Table 4), however the RR increased to 1.94 for Nashville and 2.06 for
Atlanta when only including mortality N64 (Table 5). Much like Ng
et al., 2014 and Curriero et al. (2002), a clear relationship exists between
ECEs and the increased RR of cities with a warmer MWT as these cities
generally experienced a much higher increased RR as opposed to cities
with colder MWTs. Atlanta and Nashville had a particularly high in-
creased RR during long duration, high magnitude, and early season
ECEs. Though colder MWT cities generally had lower RRs, many of
them still experienced significant increases in RR during long duration,
high magnitude, and early season ECEs. These findings are consistent
with Kinney et al. (2015) and Staddon et al. (2014) in which it was
shown that warmer temperatures do not necessarily equate to lower
mortality. Furthermore, a warming climate may not result in reduced
winter mortality as the highest RRs of increased mortality are evident
in cities with warmer MWTs. These findings should be considered by
health professionals as they prepare policies regarding climate change
mitigation.

4. Conclusions

While the effect of extreme cold is less apparent than extreme heat,
this study suggests that ECEs certainly have a large impact on human
mortality. The findings of this study were similar to (Ng et al. (2014);
Ma et al. (2014); Curriero et al. (2002); Whitman et al. (1997)) in
which the RR of increased mortality increased with ECEs, particularly
in cities with a warmer MWT. The division of ECEs by categories pro-
vided further insight on how mortality is affected by ECEs of various
magnitudes and duration by showing high magnitude and long dura-
tion ECEs generally result in a much larger and more significant in-
creased RR for cities. Furthermore, early season ECEs result in a much
longer period of increased risk as opposed to late season ECEs, while
also having the most cities with statistically significant RRs. This can
likely be attributed to individuals not being acclimatized to the extreme
cold early in the winter season. The large disparity in RRs may also sug-
gest that individuals who are more likely to succumb to the effects of
ECEs do so earlier in the winter, leaving a less vulnerable population
during late season ECEs. Individuals older than 64 were most prone to
increased mortality as the RR was generally higher when compared to
all-age mortality. The differences of the two mortality age groups may
have been even more significant if a third group of mortality, mortality
b64 years old, had been included for comparison. Out of all 32 cities in
this study, Atlanta, Nashville, and Austin had the highest RRs, especially
during long duration, highmagnitude, and early season ECEs.Moreover,
all three of these cities had relatively warm MWTs. A more in-depth
study of why these three cities had such a large increased RR during
ECEs may be beneficial.

Further research comparing the trends in cold related mortality
would reveal if mortality maintains the same clear decrease as shown
in the study on heat related trends by Sheridan and Dixon (2016). It
may also help delineate the impacts of population growth and demo-
graphic change on mortality, particularly in cities with large retirement
communities or high poverty. Expanding the mortality dataset and the
number of cities in the study would provide an even stronger relation-
ship betweenECEs andmortality. Nonetheless, a significant relationship
between ECEs and mortality has been presented. A continued push to
understand how extreme cold impacts mortality is vital toward
implementing policies and enhancing the technology that protects
individuals.
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