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Abstract This study investigates the relationship between all-
cause mortality and extreme temperature events (ETEs) from
1975 to 2004. For 50 U.S. locations, these heat and cold
events were defined based on location-specific thresholds of
daily mean apparent temperature. Heat days were defined by a
3-day mean apparent temperature greater than the 95th per-
centile while extreme heat days were greater than the 97.5th
percentile. Similarly, calculations for cold and extreme cold
days relied upon the 5th and 2.5th percentiles. A distributed
lag non-linear model assessed the relationship between mor-
tality and ETEs for a cumulative 14-day period following
exposure. Subsets for season and duration effect denote the
differences between early- and late-season as well as short and
long ETEs.While longer-lasting heat days resulted in elevated
mortality, early season events also impacted mortality out-
comes. Over the course of the summer season, heat-related
risk decreased, though prolonged heat days still had a greater
influence on mortality. Unlike heat, cold-related risk was
greatest in more southerly locations. Risk was highest for
early season cold events and decreased over the course of
the winter season. Statistically, short episodes of cold showed
the highest relative risk, suggesting unsettled weather condi-
tions may have some relationship to cold-related mortality.
For both heat and cold, results indicate higher risk to the more

extreme thresholds. Risk values provide further insight into
the role of adaptation, geographical variability, and acclimati-
zation with respect to ETEs.

Keywords Mortality .Distributed lagnon-linearmodel .Heat
wave . Cold spell . Extreme temperature events

Introduction

Studies have shown changes in the frequency, duration, and
seasonal timing of heat waves and cold spells (Kuglitsch et al.
2010; Gosling et al. 2009; Ding et al. 2010). These changes
are important as extreme temperature events (ETEs) have
been shown to impact physiological processes and human
health outcomes. In heat events, increases in cardiovascular
and respiratory deaths have been observed (e.g., Ma et al.
2014). Cold-related mortality increases are also linked to car-
diovascular and respiratory causes (e.g., Zeka et al. 2014;
Braga et al. 2002).

Despite higher mortality rates in winter, fewer studies ex-
plicitly investigate cold-related health issues (Allen and
Sheridan 2014; Morabito et al. 2014; Ma et al. 2013;
Dushoff et al. 2006). There are many reasons for this including
health care accessibility, pre-existing conditions, and air qual-
ity which play a role and add complexity to cold-related health
outcomes (Analitis et al. 2008; Basu and Samet 2002).
Additionally, a more delayed exposure-response lag effect
has been cited by previous research (Curriero et al. 2002;
Anderson and Bell 2009; Anderson and Bell 2011). This lag-
ging refers to the delay time between exposure to environmen-
tal conditions (i.e., extreme temperature) and the body’s phys-
iological response to it (i.e., sickness or death). Overall, ex-
cessive deaths associated with heat are often acute while cold-
related relationships are generally delayed, appearing more
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broadly over longer periods of time. As a result, the weather-
health relationships are often difficult to discern and vary
through both time and space (Wu et al. 2013; Morabito et al.
2012; Anderson and Bell 2009).

One difficulty in assessing the impact of ETEs is the vari-
ous ways in which these events are defined. Using synoptic
climatological approaches, offensive weather types have been
linked to elevated mortality during the warm season (Sheridan
2002; Greene et al. 2011).Models focused on behavior as well
as thermo-physiological and heat exchanges have also been
used in temperature-related studies (Blazejczyk et al. 2012;
Jendritzky et al. 2012). Thresholds of ambient air and apparent
temperature have been used (Curriero et al. 2002; Son et al.
2012; Barnett et al. 2010). although variability in such thresh-
olds exists. Similar to differences in ETEs definitions, season-
al definition also varies. Aggregated to the monthly scale,
seasons often reflect some variation of meteorological or as-
tronomical winter as defined by the declination of the sun,
although variation exists, spatio-temporally as well as within
season. While many studies fail to consider the spatial or tem-
poral variability of seasons, the implications of seasonal
changes are important and play a role in various
bioclimatological processes (Allen and Sheridan 2015) .

While research shows vulnerability associated with ETEs
(Bobb et al. 2014; Morabito et al. 2012; Hondula et al. 2012;
Koppe et al. 2004). the relationship between human health and
environmental conditions depends on both climate and non-
climate factors (e.g., Barnett 2007; Anderson and Bell 2009).
Temperate regions often feel the impact of cold-related issues
more than cooler regions that are acclimated to such temper-
atures. Infrastructure, adequate clothing, and familiarity of
environmental conditions serve as protective factors to cold-
related mortality in cold regions (Keatinge 2002; Eurowinter
Group 1997). Conversely, colder regions have been found to
be more vulnerable to extreme heat episodes for the same
reasons (Keatinge et al. 2000; Curriero et al. 2002;
Anderson and Bell 2009).

Material and methods

a. Mortality data

County-level, daily all-cause mortality data (1975–2004)
were obtained through the National Center for Health
Statistics. Mortality data were aggregated to the U.S. metro-
politan statistical areas (MSA). All U.S. metropolitan areas
(MSAs) with a population greater than 1 million were used
in this research. In total, 51 locations met these criteria, but
San Jose was disregarded due to data quality issues (Table 1).

Across the time period, there were 46 instances in which
events (e.g., plane crash) impacted mortality. By examining 5-
year centered rolling averages, daily z-scores were calculated

and compared to expected mortality values for that day of the
year. Days which exceeded a z-score of 5 and were not direct-
ly related to heat were removed from the analysis. Further
investigation showed that most of these events were associat-
ed with airplane crashes, tornadoes, or holidays (Online
Resource 1).

b. Atmospheric data

For each MSA, a single weather station was chosen to
represent weather conditions (Fig. 1). Though atmospheric
conditions may vary across the MSA (e.g., urban heat island),
single observations are often used in climate-health research.
Using four time daily observations (4, 10, 16, 22 LST), daily
mean apparent temperature values were calculated (Eq. 1).
Apparent temperature was chosen as it represents a wide range
of physiological conditions the human body may experience
by incorporating air temperature (Ta, °C), vapor pressure (Pv,
Kpa), and wind speed (v10, m/s) into a single variable
(Steadman 1994).

AT ¼ T a þ 3:30Pv � 0:7v10 � 4 ð1Þ

Table 1 Mortality data were obtained for each of the 50 largest U.S.
metropolitan statistical areas

MSA 2010 Population MSA 2010 Population

New York 19,567,410 San Antonio 2,142,508

Los Angeles 12,828,837 Orlando 2,134,411

Chicago 9,461,105 Cincinnati 2,114,580

Dallas 6,426,214 Cleveland 2,077,240

Philadelphia 5,965,343 Kansas City 2,009,342

Houston 5,920,416 Las Vegas 1,951,269

Washington 5,636,232 Columbus 1,901,974

Miami 5,564,635 Indianapolis 1,887,877

Atlanta 5,286,728 Austin 1,716,289

Boston 4,552,402 Virginia Beach 1,676,822

San Francisco 4,335,391 Nashville 1,670,890

Detroit 4,296,250 Providence 1,600,852

Riverside 4,224,851 Milwaukee 1,555,908

Phoenix 4,192,887 Jacksonville 1,345,596

Seattle 3,439,809 Memphis 1,324,829

Minneapolis 3,348,859 Oklahoma City 1,252,987

San Diego 3,095,313 Louisville 1,235,708

St. Louis 2,787,701 Hartford 1,212,381

Tampa 2,783,243 Richmond 1,208,101

Baltimore 2,710,489 New Orleans 1,189,866

Denver 2,543,482 Buffalo 1,135,509

Pittsburgh 2,356,285 Raleigh 1,130,490

Portland 2,226,009 Birmingham 1,128,047

Charlotte 2,217,012 Salt Lake City 1,087,873

Sacramento 2,149,127 Rochester 1,079,671
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Using daily mean apparent temperature, thresholds were
independently calculated for each of the locations based upon
the full period of record (1975–2004). Therefore, the defini-
tion of ETEs varied spatially but not temporally. Additionally,
rather than defining a ETE by a single day, 3-day means were
calculated whereby day 0 was averaged with the previous
2 days. When the 3-day mean was greater than the 95th per-
centile, the day was classified as a heat day. Cold days were
days in which the 3-day mean apparent temperature was less
than the 5th percent. Extreme cold (2.5th) and heat (97.5th)
thresholds were also used to account for the variability in an
event’s strength (Table 2). A similar methodology has been
used in prior studies (Saha et al. 2014; Zacharias et al. 2014) to
determine anomalous temperature events.

To account for duration, ETEs were subdivided into short
and long periods. Short events were defined as events lasting
no more than 2 days. Long events include the third day on-
wards of events that were at least 3 days. Therefore, by defi-
nition, all long events started as short events and included the
full length of the ETE. This study defined summer as June–
August and winter as December–February. In order to assess
the seasonal influence, subdivided periods classified early and
late season. January 15 and July 17 divided early and late
winter and summer seasons, respectively.

c. Distributed lag non-linear model

In order to depict the non-linear, delayed effects and the
relationship to health outcomes in a time series, a distributed
lag non-linear model (DLNM) was developed (Gasparrini et
al. 2010; Armstrong 2006; Gasparrini and Armstrong 2011).
Developed as a time series analysis, the statistical model con-
siders the health effects of exposures to environmental factors
such as air pollution and/or temperature. A DLNM

simultaneously evaluates both the non-linear exposure-re-
sponse relationships and delayed effects with time.

Unlike some other studies using DLNM (e.g., Gou et al.
2011; Morabito et al. 2012; Barnett et al. 2012). this research
evaluated the mortality responses associated with specific
ETEs which were determined a priori to analysis. For each
ETE, binary classifications were determined based upon event
duration (short or long) and seasonal timing (early or late). As
a result of both duration and seasonal considerations, four
binaries were independently analyzed: short-early, long-early,
short-late, long-late for heat, cold, extreme heat, and extreme
cold. Each binary represented a set of extreme temperature
days (ETEsubet) based on a specific criterion; these days were
used as predictors of daily mortality. For example, all short-
early heat days were compared against all non-heat days.
Relative risk values were computed based upon DLNM iter-
ations for each of the classifications.

The model used a quasi-Poisson regression to model the
daily counts of deaths as a function of ETEs:

ETEsubset ¼ 1 if ETEexists
0 else

�

Y subset∼quasipoisson ETESubsetð Þ
Log ETESubsetð Þ ¼ αþ S timeYear; var:df ¼ 4ð Þ
þ S timeJulianDay; 7

*30
� �þ DOW

ð2Þ

where ETEsubset is a binary representative of heat or cold
day; Ysubset is the observed daily mortality on day subset; α is
the intercept; timeyear represents long-term trends; timeJulian
Day represented seasonal trends; and DOWwas a dummy var-
iable representing day of week (Eq. 2). S is the natural cubic
spline function whereby var.df is the degree of freedom (df)
for each variable. Confounders were accounted for as daily
mortality varies by season, year, and day of week. Four

Fig. 1 Represented by a single airport, locations were geographically clustered for comparison purposes
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degrees of freedom were assigned to the long-term trend line
while 7 df/year were used to identify the seasonality curve. As
noted by Gou et al. (2011). the options for DLNM such as
degrees of freedom, maximum lag day, and cross-basis type
are vast, and therefore, the decisions for DLNM may be cho-
sen according to the best model fit. Although there is no con-
sensus on the most appropriate lag structure, a 14-day lag
model has been used often when accounting for cold-related
mortality (Armstrong 2006; Gasparrini et al. 2010).
Consequently, in this study, relative risk was computed based
upon a 14-day lag to consider both the acute response of heat
and the delayed response of cold. Various lags were consid-
ered (3-, 5-, 7-, 10-, 14-day), yet the differences in results were
generally minimal.

For each subset of ETEs, a distributed lag non-linear model
(dlnm package in R) assessed the cumulative impact of weath-
er on mortality. Cumulative relative risks were assessed with
the mean relative risk as well as the 95% confidence intervals.
Statistical significance was based upon the 95 % confidence
intervals whereby if the minimum relative risk value was
greater than 1.0, significance was assigned to the value. In
addition to calculating risk for each of the 50 locations, six
geographic regions were compared (Fig. 1).

Results

d. Heat and extreme heat events

Across the domain, California experienced the fewest heat
and extreme heat days (Table 3). The southeast and central
portions of the country recorded the most heat days while

Table 2 Apparent temperature 3-day thresholds for heat, extreme heat,
cold, and extreme cold

Region Station Heat XHeat Cold XCold

Northeast Baltimore 28.4 29.8 −8.6 −11.4
Boston 24.5 26.2 −12.6 −15.5
Buffalo 23.3 24.8 −15.5 −18.2
Chicago 26.1 27.9 −15.7 −19.6
Cincinnati 27.3 28.8 −11.2 −14.5
Cleveland 25.2 26.7 −13.9 −16.9
Columbus 26.9 28.5 −12.1 −15.3
Detroit 25.3 26.9 −14.6 −17.5
Hartford 25.6 27.2 −12.7 −15.5
Indianapolis 27.3 28.9 −12.9 −16.4
Louisville 29.3 30.8 −8.8 −12
Milwaukee 24.4 26.2 −16.8 −20.7
New York 27 28.5 −10.7 −13.5
Philadelphia 28 29.5 −9.6 −12.3
Pittsburgh 25.1 26.6 −13 −16
Providence 24.9 26.5 −11.7 −14.6
Richmond 29.4 30.7 −5.9 −8.5
Rochester 24.2 25.9 −15.1 −17.9
St. Louis 30 31.5 −11.1 −14.8
Virginia Beach 29.4 30.6 −5.2 −7.8
Washington 29.4 30.7 −7.4 −10.2
Northeast α 26.7 28.2 −11.7 −14.7
Northeast σ 2.0 1.9 3.1 3.3

California Los Angeles 21.6 22.8 7.5 6.1

Riverside 26.1 27.3 4 2.5

Sacramento 24.2 25.8 1.6 0.1

San Diego 23 24.3 8.7 7.5

San Francisco 16 17.4 3.4 2.2

California α 22.2 23.5 5.0 3.7

California σ 3.4 3.4 2.6 2.7

Southeast Atlanta 29.3 30.4 −4 −6.7
Austin 31.8 32.5 0.5 −2.5
Birmingham 30.6 31.5 −2.7 −5.4
Charlotte 29.3 30.4 −3.6 −5.9
Dallas 31.9 32.8 −2.9 −5.7
Houston 32.9 33.6 2.4 −0.2
Memphis 31.9 33.1 −4.7 −7.6
Nashville 30 31.2 −6.2 −9.4
New Orleans 32.5 33.3 2.6 −0.1
Raleigh 29.3 30.4 −4.5 −7
San Antonio 31.2 31.9 1.7 −1.1
Southeast α 31.0 31.9 −1.9 −4.7
Southeast σ 1.3 1.2 3.0 3.0

Central Denver 21.4 22.5 −12.2 −15.6
Kansas City 28.7 30.3 −13 −17.3
Minneapolis 24.9 26.9 −21.5 −25
Oklahoma City 29.3 30.4 −8.2 −11.5
Central α 26.1 27.5 −13.7 −17.4

Table 2 (continued)

Region Station Heat XHeat Cold XCold

Central σ 3.2 3.2 4.8 4.9

Florida Jacksonville 31.4 32.1 3.3 0.7

Miami 32.4 32.9 13.8 10.8

Orlando 31.5 32.2 7.7 4.9

Tampa 32.1 32.8 7.8 5.1

Florida α 31.9 32.5 8.2 5.4

Florida σ 0.4 0.4 3.7 3.6

Western Las Vegas 31.3 32.6 −0.4 −2.3
Phoenix 34.8 35.8 5.6 3.8

Portland 20.4 22.2 −2.9 −5
Salt Lake City 23.8 24.9 −10 −12.4
Seattle 18.3 20 −3 −4.8
Western α 25.7 27.1 −2.1 −4.1
Western σ 6.3 6.1 5.0 5.2

Regional means (α) and standard deviations (σ) are also shown
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extreme heat was more variable. Las Vegas experienced the
most heat and extreme heat days. Because of the location-
specific thresholds, fewer warm ETEs were found in Florida.

Heat and extreme heat events showed elevated risk for
early season events (Figs. 2 and 3). Despite this finding, only
four locations for short-early heat and eight locations for
short-early extreme heat events were found to be significant.
Of the 50 locations, 40 showed relative risk values in excess of
1.0 for long-early heat days. Longer events during the first half
of summer showed the most significant values for heat (18)
and extreme heat (14) events compared to the other subsets.
On average, relative risk values were also the highest for these
events with 1.09 and 1.13 for heat and extreme heat, respec-
tively (Table 4). This result supports the finding that more
sustained events in the early part of the summer have a greater
impact on human mortality. Comparing different thresholds of
heat, more extreme days generally resulted in higher risk of
mortality outcomes.

With respect to late season warm events, variability was
found in terms of duration. Shorter events showed the lowest
impact on mortality of all subsets. These short-late events also
resulted in the fewest significant values across all permuta-
tions of heat (1) and extreme heat (4). However, comparing
duration, the longer events still showed a higher risk com-
pared to shorter events where significant values found for 11
locations. Across the 50 cities, an average (minimum, maxi-
mum) risk for long-late heat (1.04 [0.62, 1.59]) and extreme
heat (1.06 [0.077; 1.61]) was shown (Table 4). Similar to the
earlier ETEs, more extreme events showed higher risk, sug-
gestingmore deadly heat waves are those with higher apparent
temperature thresholds.

Generally, Florida experienced lower risk for warm ETEs
compared to other, more northern locations. Providence,

Table 3 Total number of cold, extreme cold, heat, and extreme heat
days for each location. Regional means (α) and standard deviations (σ)
are also shown

Region Station Heat XHeat Cold XCold

Northeast Baltimore 409 186 429 183

Boston 378 172 390 176

Buffalo 392 192 423 171

Chicago 431 191 491 192

Cincinnati 427 204 474 204

Cleveland 409 197 455 185

Columbus 407 191 476 186

Detroit 411 197 470 191

Hartford 407 204 431 176

Indianapolis 430 199 479 208

Louisville 418 217 462 210

Milwaukee 389 173 468 197

New York 378 189 418 171

Philadelphia 400 202 420 183

Pittsburgh 416 211 431 172

Providence 413 182 407 176

Richmond 429 191 434 181

Rochester 403 168 411 165

St. Louis 426 204 474 214

Virginia Beach 419 187 413 151

Washington 409 197 442 176

Northeast α 409.6 193.0 442.8 184.2

Northeast σ 15.3 12.2 28.1 15.5

California Los Angeles 302 125 338 164

Riverside 314 135 385 196

Sacramento 150 56 302 145

San Diego 370 180 369 190

San Francisco 358 164 433 207

California α 298.8 132.0 365.4 180.4

California σ 78.7 42.8 44.1 22.7

Southeast Atlanta 428 208 423 183

Austin 443 185 394 161

Birmingham 431 202 419 186

Charlotte 446 194 442 176

Dallas 436 197 397 181

Houston 427 181 373 158

Memphis 442 206 433 192

Nashville 443 200 446 186

New Orleans 415 174 370 156

Raleigh 453 187 433 175

San Antonio 387 184 379 164

Southeast α 431.9 192.5 409.9 174.4

Southeast σ 17.5 10.6 26.9 12.0

Central Denver 454 174 368 169

Kansas City 445 176 467 196

Minneapolis 432 176 451 191

Oklahoma City 444 205 417 185

Table 3 (continued)

Region Station Heat XHeat Cold XCold

Central α 443.8 182.8 425.8 185.3

Central σ 7.8 12.9 37.9 10.2

Florida Jacksonville 404 155 348 136

Miami 324 131 365 160

Orlando 338 134 362 142

Tampa 360 166 365 139

Florida α 356.5 146.5 360.0 144.3

Florida σ 30.3 14.6 7.0 9.3

Western Las Vegas 464 230 432 214

Phoenix 447 186 429 191

Portland 410 181 426 212

Salt Lake City 453 219 446 221

Seattle 414 181 407 196

Western α 437.6 199.4 428.0 206.8

Western σ 21.6 20.9 12.5 11.4
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Hartford, and New York consistently showed the highest risk
associated with heat and extreme heat events, with New York
being the only location where all types of extreme heat events
significantly impacted mortality. Given California’s unique
climate, it is not surprising that California showed variable
results, with some locations showing elevated risk while
others did not.

e. Cold events and extreme cold events

As with heat, locations in Florida had few cold ETEs. More
variability was found in California where Los Angeles and San
Francisco both showed few cold ETEs while the other locations
experienced a higher number. While northeast locations record-
ed the greatest number of cold days, western locations consis-
tently observed more extreme cold. With 491 cold days,
Chicago experienced the most cold days while Salt Lake City
experienced the most extreme cold days with 221.

Results from cold events indicate a strong relationship
between early season events and increased risk for mortal-
ity (Figs. 4 and 5). Across the domain, average risk values
were higher than heat counterparts. An average relative
risk of 1.19 was found for short cold and 1.26 for ex-
treme cold events. These short-lasting, early occurring
events had the highest relative risk for any other subset
of ETEs analyzed. In both instances, significant values
were found for at least 30 locations. However, unlike heat,
many of these values were not only found in the north-
east. Similar significant results were found for long-early
events, but with an average risk value of 1.10, the values
were slightly lower than the shorter episodes of cold. With
33 significant values for cold and 15 for extreme cold, a
majority of locations still showed a significant relationship
between longer cold events and mortality. As with shorter
events, geographic variability was found with the highest
risks found in more southern locations.

Fig. 2 Mean cumulative relative
risk values for heat days. Results
are shown for short-early, long-
early, short-late, and long-late
heat criteria. Darker color
represents higher relative risk and
significant values are denoted
with a black circle

Fig. 3 Mean cumulative relative
risk values for extreme heat days.
Results are shown for short-early,
long-early, short-late, and long-
late extreme heat criteria. Darker
color represents higher relative
risk and significant values are
denoted with a black circle
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While the domain observed elevated relative risks associ-
ated with late occurring cold and extreme cold events, the
risks were not as high throughout much of the country when
compared with other iterations of cold events. As the winter
season progresses, relative risks associated with cold events
was found to be reduced slightly. On average, the highest risk
values were found in Florida, yet other locations such as
Milwaukee (1.21) and Columbus (1.18) were still elevated.
Results indicate that other southern locations such as
Nashville, Atlanta, and New Orleans also showed significant
relationships between late season cold and mortality. While

elevated risk was found, on average, these later occurring
events did not negatively impact health as much as earlier
events. With higher values for extreme cold ETEs compared
to cold ETEs, the strength of a cold event seems to have a role
in human response to long lasting, late occurring cold events.

Discussion

While higher risk values were found for more extreme heat
events, duration and seasonal timing emerged as critical

Table 4 Regional comparison of
mean cumulative relative risk
values (minimum, maximum) for
heat, extreme heat, cold, and
extreme cold

Heat

Regions Short-early Long-early Short-late Long-late

Northeast 1.07 (0.73, 1.59) 1.13 (0.80, 1.61) 0.97 (0.77, 1.22) 1.05 (0.92, 1.27)

Southeast 1.04 (0.62, 1.56) 1.09 (0.78, 1.56) 1.03 (0.82, 1.45) 1.02 (0.88, 1.26)

Central average 1.00 (0.75, 1.30) 1.09 (0.87, 1.43) 0.97 (0.82, 1.15) 1.04 (0.96, 1.13)

Florida 1.00 (0.80, 1.23) 1.08 (0.95, 1.35) 0.98 (0.77, 1.17) 1.02 (0.86, 1.29)

Western 1.09 (0.85, 1.49) 1.02 (0.77, 1.45) 1.00 (0.68, 1.27) 1.06 (0.95, 1.21)

California 0.96 (0.75, 1.24) 1.05 (0.77, 1.51) 1.03 (0.80, 1.21) 1.00 (0.87, 1.21)

U.S. average 1.04 1.09 0.99 1.04

Total significant values 4 18 1 11

XHeat

Northeast 1.17 (0.79, 2.09) 1.20 (0.61, 2.46) 1.01 (0.62, 1.47) 1.07 (0.78, 1.45)

Southeast 1.09 (0.63, 1.99) 1.09 (0.55,2.19) 1.03 (0.73, 1.78) 1.03 (0.77, 1.45)

Central average 1.12 (0.79, 1.67) 1.18 (0.81, 2.01) 0.99 (0.77, 1.30) 1.10 (0.912, 1.38)

Florida 1.04 (0.64, 1.40) 1.22 (0.78, 2.53) 0.96 (0.71, 1.21) 1.04 (0.78, 1.44)

Western 1.18 (0.78, 1.86) 0.91 (0.52, 1.55) 1.05 (0.72, 1.36) 1.08 (0.94, 1.31)

California 1.05 (0.68, 1.45) 1.03 (0.44, 1.74) 1.06 (0.84, 1.37) 1.00 (0.71, 1.29)

U.S. average 1.13 1.13 1.02 1.06

Total significant values 8 14 4 11

Cold

Northeast 1.25 (0.83, 1.70) 1.07 (0.92, 1.32) 1.03 (0.72, 1.40) 1.01 (0.87, 1.19)

Southeast 1.08(0.73, 1.62) 1.20 (0.97, 1.55) 1.04 (0.81, 1.51) 1.08 (0.88, 1.47)

Central average 1.05 (0.77, 1.40) 1.06 (0.92,1.22) 1.07 (0.89, 1.34) 1.02 (0.91, 1.13)

Florida 1.29 (1.05,1.67) 1.20 (1.03, 1.46) 1.19 (0.96, 1.39) 1.06 (0.88, 1.29)

Western 1.18 (0.67, 1.55) 1.05 (0.89, 1.16) 0.91 (0.57, 1.18) 1.00 (0.76, 1.23)

California 1.24 (0.88, 1.66) 1.03 (0.91, 1.16) 0.92 (0.68, 1.14) 1.07 (0.91, 1.27)

U.S. average 1.19 1.10 1.02 1.04

Total significant values 33 33 8 13

XCold

Northeast 1.30 (0.80, 1.95) 1.08 (0.41, 2.17) 1.00 (0.63, 1.40) 1.03 (0.79, 1.36)

Southeast 1.24 (0.74, 2.06) 1.24 (0.72, 1.80) 1.11 (0.74, 1.68) 1.09 (0.67, 2.07)

Central average 1.14 (0.83, 1.54) 1.06 (0.91, 1.25) 1.12 (0.77, 1.58) 0.98 (0.70, 1.27)

Florida 1.46 (1.18, 1.98) 1.28 (0.96, 1.84) 1.19 (0.79, 1.49) 1.04 (0.63, 1.84)

Western 1.14 (0.63, 1.71) 1.08 (0.86, 1.33) 0.91 (0.56, 1.34) 1.04 (0.68, 1.34)

California 1.26 (0.90, 1.74) 1.01 (0.80, 1.23) 0.93 (0.66, 1.37) 1.19 (0.92, 1.87)

U.S. average 1.26 1.12 1.03 1.06

Total significant values 31 15 6 10
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factors associated with mortality (Table 4). Similar to other
studies (Baccini et al. 2008; Basu and Samet 2002). elevated
risk was found for early heat and extreme heat events when
compared to later occurring events. Risk also increased with
longer-lasting events. While cold is assessed in fewer studies,
short, early cold, and extreme cold events consistently showed
the highest vulnerability, with greater vulnerability than longer
early cold events. Higher relative risk values were also found
for early season cold events compared to later season events.
By the second half of the winter season, risk decreased sug-
gesting possible acclimatization or adaptation to cold environ-
ments. As with heat, higher risks were generally found for
more extreme events. In terms of geographic variability,
Florida consistently showed the most elevated risk associated
with cold ETEs, while more northern locations with higher
risk for warm ETEs. These results support the findings that
seasonal timing, duration, and relative strength of an event
plays a role in temperature-related vulnerability.

Periods of elevated temperature have been linked to excess
mortality (e.g., Anderson and Bell 2011; Curriero et al. 2002).
In this study, significant relationships between longer heat ep-
isodes and elevated mortality, regardless of seasonal timing,
was evident. Sustained periods of heat have been shown to
negatively influence health outcomes (e.g., Hajat et al. 2002;
Sheridan and Lin 2014; Xu et al. 2014). Studies have also
linked comorbidities associated with prolonged elevated tem-
perature including cardiovascular-, respiratory-, and diabetes-
related conditions (Medina-Ramon and Schwartz 2007). In ad-
dition to duration, seasonal timing of heat events has also been
shown to influence human health responses. Baccini et al. 2008
showed greater heat-related mortality during the early summer
than later on, a finding supported by others suggesting that
populationsmay acclimatize to elevated temperatures over time
(e.g., Páldy et al. 2005; Sheridan and Kalkstein 2010; Hajat et
al. 2005; Gosling et al. 2009). While this study cannot deter-
mine the degree to which acclimatization takes place or if

Fig. 4 Mean cumulative relative
risk values for cold days. Results
are shown for short-early, long-
early, short-late, and long-late
cold criteria. Darker color
represents higher relative risk and
significant values are denoted
with a black circle

Fig. 5 Mean cumulative relative
risk values for extreme cold days.
Results are shown for short-early,
long-early, short-late, and long-
late extreme cold criteria. Darker
color represents higher relative
risk and significant values are
denoted with a black circle
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certain thresholds exist in which this adaptation to environmen-
tal conditions does not occur, higher risk associated with early
season heat events was shown. Consequently, this study
showed the importance of seasonality on heat-health related
outcomes. Similarly, the intensity of heat events have been
shown to influence mortality (Anderson and Bell 2009; Hajat
et al. 2006; Gasparrini and Armstrong 2011; Zacharias et al.
2014). For instance, Aström et al. (2013) found a 4.6 % in-
crease in mortality on extreme heat days compared to normal
summer days. Together, duration, seasonal timing, and relative
event strength were all found to have an impact on the risk
associated with warm ETEs.

While increased risk to heat events have been previously
shown (e.g., Sheridan and Kalkstein 2010; Hajat et al. 2005).
fewer studies have considered the influence of cold waves on
human health (e.g., Analitis et al. 2008; Barnett et al. 2012;
Eurowinter Group 1997; Rocklöv et al. 2014). This study
showed the highest risk associated with short, early cold, and
extreme cold events. These early events also showed higher
vulnerability when compared to later events. Unsettled weather
conditions have been shown to have some relationship to cold-
related mortality (Allen and Lee 2014; Kassomenos et al. 2007;
McGregor 1999; O’Neill 2003). Following the passage of fron-
tal boundaries, Curson (1996) showed an increase in blood vis-
cosity—an important risk factor associated with cardiovascular
mortality events. Allen and Sheridan (2014) found a similar
conclusion as Plavcová and Kyselý (2014). with rising temper-
atures and decreasing pressure preceding high mortality days.
Gerber et al. (2006) suggested the observed increases in winter-
time cardiac arrests may be attributed to the relative—and not
absolute—changes in temperature based upon season or geo-
graphic region. During the winter, Rocklöv et al. (2014) found
a relationship between mortality and decreases in temperature.
As cold air exposure has been attributed to increases in cardio-
vascular strain (e.g., Kyselý et al. 2009; Gorjanc et al. 1999;
Keatinge 2002). the Eurowinter Group (1997) concluded that
low temperatures were related to the observed increase in heart
disease mortality during the winter season. However, as noted in
other studies, cold-related health outcomes have also been
linked to other, more local factors such as air pollution, socio-
economic resources, and education (e.g., Frost and Auliciems
1993; Eurowinter Group 1997; Madrigano et al. 2013) and are
not necessarily indicative of temperature alone (Kyselý et al.
2009; Ebi and Mills 2013). The results of this research are sup-
ported by Barnett et al. (2012) which found heat and cold events
earlier in the season to be more dangerous than later season
events. However, the reason for this seems unclear as there has
been minimal research into acclimatization related to cold
events. Early season, short-lasting cold events may be more
dangerous due to an increased susceptible population and inad-
equate resources, education, or preparations to cope with the
cold (Frost and Auliciems 1993; Eurowinter Group 1997;
Conlon et al. 2011).

This research showed higher vulnerability associated with
heat in more northern locations such as New York while in-
creased risk related to cold was found in the south. The spatial
heterogeneity of heat and cold effects is consistent with other
studies which suggest variability associated with vulnerability
to anomalous temperature events (Chestnut et al. 1998; Braga
et al. 2002; Barnett 2007; Anderson and Bell 2009). For in-
stance, studies have shown a greater risk of heat-related mor-
tality in high latitude locations where populations may not be
accustomed to elevated temperatures (Hattis et al. 2012;
McGeehin and Mirabelli 2001; Hajat and Kosatky 2010).
However, others (Baccini et al. 2008; D’Ippoliti et al. 2010)
have showed greater effects of heat in more southern loca-
tions. The Eurowinter Group (1997) suggested a greater vul-
nerability to cold in milder regions. Keatinge et al. (2000)
suggested behavior as a possible explanation to adaptation to
environmental conditions. Despite these findings, Barnett et
al. (2012) suggests people are less able to cope with extreme
heat than extreme cold. In cold, people can wear more clothes
or stay indoors while heat relief requires additional interven-
tions such as air conditioning. In addition to large-scale spatial
variability associated with heat and cold, intra-urban variabil-
ity and individual heterogeneity has also been shown especial-
ly related to heat effect (Kuras et al. 2015; Hondula et al. 2012;
Vaneckova et al. 2010).

Most studies which have utilized a distributed lag non-
linear model have originated within the epidemiological re-
search community (Wu et al. 2013; Morabito et al. 2012). The
results of this research draw attention to vulnerability associ-
ated with ETEs through a DLNM approach in applied clima-
tological research. By incorporating a distributed lag non-
linear model, risk to heat and cold events was determined
across the USA. While not analyzed, it is important to note
that in addition to elevated ambient air temperature, other
confounding factors such as air pollution may also be associ-
ated with increased mortality during ETEs (Analitis et al.
2014; Vanos et al. 2014). While the issue of mortality dis-
placement or harvesting (e.g., Hajat et al. 2006) was consid-
ered in the 14-day lag, the study did not directly attribute an
amount of displacement as a result of ETEs. Future research
may evaluate differential responses associated with other de-
mographics such as age, sex, or cause of death to further
understand temperature-mortality risk. With more insight into
the risks associated with ETEs, focused resources may be
provided to better prepare regions or subpopulations in coping
with heat and cold. Through education or warning systems,
vulnerable populations may cope with increased temperature
variability in a changing climate.
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