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A B S T R A C T

Temperature-mortality relationships are nonlinear, time-lagged, and can vary depending on the time of year and
geographic location, all of which limits the applicability of simple regression models in describing these asso-
ciations. This research demonstrates the utility of an alternative method for modeling such complex relationships
that has gained recent traction in other environmental fields: nonlinear autoregressive models with exogenous
input (NARX models). All-cause mortality data and multiple temperature-based data sets were gathered from 41
different US cities, for the period 1975–2010, and subjected to ensemble NARX modeling. Models generally
performed better in larger cities and during the winter season. Across the US, median absolute percentage errors
were 10% (ranging from 4% to 15% in various cities), the average improvement in the r-squared over that of a
simple persistence model was 17% (6–24%), and the hit rate for modeling spike days in mortality (> 80th
percentile) was 54% (34–71%). Mortality responded acutely to hot summer days, peaking at 0–2 days of lag
before dropping precipitously, and there was an extended mortality response to cold winter days, peaking at 2–4
days of lag and dropping slowly and continuing for multiple weeks. Spring and autumn showed both of the
aforementioned temperature-mortality relationships, but generally to a lesser magnitude than what was seen in
summer or winter. When compared to distributed lag nonlinear models, NARX model output was nearly iden-
tical. These results highlight the applicability of NARX models for use in modeling complex and time-dependent
relationships for various applications in epidemiology and environmental sciences.

1. Introduction

There is a large, robust body of research showing an association
between temperature and human mortality across a wide range of cli-
mate regions (Sheridan and Allen, 2015). Nearly universally, the
highest temperatures experienced at any location are associated with
increased mortality rates, as is cold winter weather, yielding an ap-
proximate J- or U-shaped curve to the temperature-mortality relation-
ship (Ryti et al., 2016; Donaldson et al., 2003; McMichael et al., 2008).
While such generalities persist across most of the literature, the precise
nature of this association can differ markedly by climate region, cause
of death, the modeling technique used, and other confounding factors
(e.g. air quality, demographic differences) that play into this weather-
health relationship (Sheridan and Allen, 2015). Along with these dif-
ferences, the potential impacts of climate change (e.g. Sheridan and
Dixon, 2017; Sheridan et al., 2012a, 2012b), and the application of
novel modeling techniques (e.g. Gasparrini et al., 2017), have sparked a
litany of different studies investigating temperature-related mortality in
various locations, especially heat-related mortality (Gosling et al.,

2009; Basu and Samet, 2002; Basu, 2009; Gasparrini et al., 2015).
Most often, the impacts of excessive heat events and cold events

have been studied separately, either owing to an investigator's specific
area of expertise, or due to the differences in terms of how each extreme
is modeled. Studies linking extreme heat events and human mortality
have generally observed a threshold thermal metric, above which
mortality is observed to rise (Sheridan and Allen, 2015). This threshold
varies spatially, with higher thresholds typically found in warmer lo-
cations. Further, the nature of the threshold may be different from lo-
cation to location; high humidity plays a substantive role in reducing
the human body's ability to cool itself and thus may be as critical of a
factor as high temperatures. While there are direct deaths due to hy-
perthermia, excessive heat has been associated with increased mortality
across many causes of death, in particular those related to cardiovas-
cular and respiratory diseases (Gasparrini et al., 2015). Excessive heat
events typically result in very immediate health responses, as increases
in mortality are generally strongest from the day of the event to 2 days
afterwards.

In contrast to heat-related mortality, cold-related mortality is less
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often studied, despite the fact that the majority of annual deaths in
many mid-latitude climates occur in the winter (Allen and Sheridan,
2014; Gasparrini et al., 2015). It is more difficult to directly link cold-
related mortality to temperature effects due to the extended lag-time
associated with increased mortality afterwards, usually peaking after
3–4 days, and continuing to be associated with increased mortality for
up to 2–3 weeks afterwards (Lee, 2016; Allen and Sheridan, 2015;
Anderson and Bell, 2009). The direct effects of cold temperatures can
cause constriction of blood vessels, increased blood pressure, thickening
of the blood and increases in platelet and red blood cell counts, all of
which contribute to an increased risk of negative outcomes such as
heart attacks and strokes (Ryti et al., 2016; Näyhä, 2002). The extended
delayed response is likely an indirect result of lagged exposure to cold
temperatures that can result in acute respiratory issues such as influ-
enza and pneumonia, which may lead to death (Davis et al., 2016b;
Kysely et al., 2009). Cold and dry multivariate weather types (Lee et al.,
2016; Morabito et al., 2006; Grass and Kane, 2008; McGregor, 1999)
and wind (Kim et al., 2016) have also been linked to increased win-
tertime mortality.

Due to the shape of the relationship between mortality and tem-
peratures, traditional linear regression-based approaches to modeling
are not sufficient for capturing both winter and summer temperature-
mortality associations. One modeling technique gaining popularity re-
cently is the distributed-lag non-linear model (DLNM) which not only
overcomes the issue of non-linearity in the relationship, but also allows
the lag-structure of the temperature-mortality relationship to be in-
corporated into the model (Gasparrini et al., 2010). A recently-devel-
oped artificial neural network (ANN)-based time-series modeling fra-
mework known as non-linear autoregressive models with exogenous
input (or NARX models) shares this ability to approximate nonlinear
time-dependent relationships (Guzman et al., 2017). Further, NARX

models have the added benefits of: 1) not having to assume any parti-
cular shape to the temperature-mortality association; 2) being intern-
ally cross-validated on a separate portion of the dataset; and 3) being
easily modified to run in a ‘closed-loop’ (feedback) mode allowing them
to take on real-time, multi-step-ahead predictions and hindcasts (e.g.
Lee et al., 2016).

The main goal of this paper is to demonstrate the effectiveness of
this NARX modeling technique in temperature-related mortality re-
search (and to the wider epidemiology and biometeorology commu-
nities in general), as it has gained popularity recently in other en-
vironmental research (e.g. Guzman et al., 2017, and references therein),
including a recently completed project by the investigators (Lee et al.,
2016). While a thorough description of ANNs and NARX models is
outside the scope of this paper (c.f., Maier and Dandy, 2000;
Diaconescu, 2008; Beale et al., 2014), in describing the NARX modeling
framework specific to this study, we attempt to clarify NARX modeling
lingo by using regression-specific terms when applicable. The goal of
NARX modeling is the same as for a standard multiple regression: to
develop a model that uses predictors in order to yield a best estimate of
a predictand. To demonstrate this new methodology, we apply a suite of
NARX models to examine the year-round apparent-temperature-mor-
tality relationship across 41 different cities in the United States, and
discuss the benefits and limitations of this technique in regards to its
modeling performance. We also broadly compare the results of the
NARX methodology with the output of DLNM models for four cities.

2. Materials and methods

2.1. Data

Mortality data for the United States have been acquired from the

Fig. 1. The locations of the 41 cities used in this research (see Table 1 for city names for the abbreviations noted here).
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National Center for Health Statistics for the period 1975–2010. Daily
all-cause mortality totals are aggregated to the metropolitan area level
for all major metropolitan areas in the US, using the boundaries defined
by the US Census in 2010. Use of these data required that no date have a
total mortality of under 5; eliminating all metropolitan areas in which
this occurred leaves 41 metropolitan areas for all analyses in this re-
search (Fig. 1).

The universal apparent temperature (AT) developed by Steadman
(1984) is one of the most commonly used metrics in assessing the im-
pacts of extreme temperature events on human health outcomes
(Anderson et al., 2013). In addition to temperature, this metric also
accounts for atmospheric humidity, which can be critical in delineating
summer heat events, as well as wind speed, critical for assessing the
wind chill in cold events. Beyond the AT itself, many studies have
shown an added heat wave effect on mortality, that is, that several
consecutive days of very high temperatures will result in augmented
impacts on human health beyond what would be expected by those
days individually. The Excess Heat Factor (EHF), developed by Nairn
and Fawcett (2014), is a statistical way of accounting for longer se-
quences of hot weather, especially when preceded by relatively cool
conditions. It is defined in this work as the number of degrees of ex-
ceedance of the three-day mean AT above the 95th percentile AT for a
location, multiplied by the difference between that three-day value and

the 30-day mean before it. Thus, it highlights periods with extended hot
weather that were preceded by cooler conditions.

For this study, in addition to using the raw value of AT at two
specific times (0500 and 1700 EDT), a mean daily AT (calculated from
these two values) was transformed into a deseasonalized anomaly. The
seasonally-relative baseline for this deseasonalized anomaly was com-
puted by first setting each day in the month equal to its corresponding
monthly mean AT (computed across all 36 years), and then subjecting
the resulting step-like seasonal curve to a 31-day centered moving
average to remove the step-like discontinuities. This smoothed sea-
sonally-relative baseline was then subtracted from the observed mean
AT on a daily basis, yielding the deseasonalized apparent temperature
anomaly (ATanom) that was included in each city's model. By using these
three variables, we account for the fact that the best predictors of
mortality – in terms of time of day – vary spatially (e.g. Davis et al.,
2016a), and that there is evidence that the impact of heat may vary
according to the time of year (e.g. Anderson and Bell, 2010; Ng et al.,
2014).

Two additional time-relative variables were also included in every
model: a sinusoidal seasonal-signal, and a simple linear (secular trend)
variable counting the days in the time series (e.g. 1 January 1975 = 1)
to account for population-related changes in raw mortality counts. A
day-of-the-week signal was also trialed, but found to have a negative (if
any) effect on model performance in many cities, and thus was excluded
from final modeling.

The resulting set of six predictor variables (AT05, AT17, ATanom,
EHF, seasonal signal, secular trend) was ultimately chosen after mul-
tiple rounds of modeling using various datasets (including other me-
teorological variables) and input variable selection processes. When
additional variables were used, the collinearity of these different me-
teorological variables and the lag-response differences of the

Table 1
The 41 metropolitan areas used in this research. Listed for each area is the airport code for
the station whose meteorological data are used, the 2010 population, mean apparent
temperature, and the 10th and 90th percentile values for apparent temperature.

Metropolitan area Airport
Code

Population
(millions)

Mean Daily AT

10th %ile Mean 90th %ile

Albany ALB 1.2 −11.0 5.8 22.4
Atlanta ATL 5.3 0.0 15.0 28.2
Baltimore BWI 2.7 −4.9 10.8 26.6
Birmingham BHM 1.1 1.3 16.3 29.5
Boston BOS 4.5 −8.8 6.4 21.9
Buffalo BUF 1.1 −11.8 5.0 21.4
Chicago ORD 9.5 −10.8 6.6 24.0
Cincinnati CVG 2.1 −7.2 9.7 25.7
Cleveland CLE 2.1 −9.8 6.8 23.1
Columbus CMH 1.9 −8.0 8.9 25.0
Dallas DFW 6.4 1.6 17.2 31.3
Denver DEN 2.5 −7.3 6.5 20.8
Detroit DTW 4.3 −10.7 6.3 23.2
Hartford BDL 1.2 −8.9 7.2 23.4
Houston IAH 5.9 6.5 20.7 32.3
Indianapolis IND 1.9 −8.5 8.8 25.6
Kansas City MCI 2.0 −8.2 9.6 27.0
Los Angeles LAX 12.8 10.2 15.7 21.0
Memphis MEM 1.3 −0.9 15.5 30.5
Miami MIA 5.6 17.1 25.3 31.8
Milwaukee MKE 1.6 −11.8 4.9 22.1
Minneapolis MSP 3.3 −15.7 4.2 22.8
Nashville BNA 1.7 −2.4 13.5 28.1
New York LGA 19.6 −6.8 9.0 24.8
Orlando MCO 2.1 11.5 22.3 30.7
Philadelphia PHL 6.0 −5.9 10.2 26.3
Phoenix PHX 4.2 9.6 21.8 34.7
Pittsburgh PIT 2.4 −8.8 7.7 23.3
Portland PDX 2.2 0.1 9.6 19.5
Providence PVD 1.6 −8.1 7.1 22.8
Riverside RIV 4.2 7.7 16.4 26.0
Rochester ROC 1.1 −11.2 5.5 21.9
Sacramento SAC 2.1 4.8 14.1 23.6
Saint Louis STL 2.8 −6.3 11.3 28.3
San Antonio SAT 2.1 5.9 20.0 31.4
San Diego SAN 3.1 11.1 16.6 22.5
San Francisco SFO 4.3 5.9 11.0 16.2
Seattle SEA 3.4 0.0 8.3 17.2
Tampa TPA 2.8 11.8 23.1 31.7
Virginia Beach ORF 1.7 −1.8 13.4 27.8
Washington DCA 5.6 −3.8 12.0 27.7

Table 2
Median predictor variable importance (in NARX models) by season across all 41 cities
examined. Darker red (green) coloring indicates increasing (decreasing) importance.

Table 3
NARX model monthly performance statistics averaged across all 41 locations examined.
MdAPE refers to the median absolute percentage error between actual mortality and the
RITE data set; R2IM reflects the improvement of the r2 statistic (of the RITE data set vs.
actual mortality) over that of the simple 1-day autocorrelation of the actual observed
mortality; and hit rate is the percentage of the time a ‘spike day’ (> 80th percentile) in
actual mortality was also a ‘spike day’ (> 80th percentile) in the RITE output. Darker red
(green) coloring indicates increasingly better (poorer) performance.
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temperature-mortality relationship between cities resulted in highly
diverse sets of predictor variables between different cities, which was
considered detrimental to the aim of highlighting the modeling tech-
nique rather than predictor selection. Thus, we chose to use a standard
set of predictors that both account for collinearity (since AT in-
corporates temperature, humidity and wind) and have been shown to
correlate with all-cause mortality in previous research (Anderson et al.,
2013).

2.2. NARX modeling methodology

The set of six daily weather variables (X) for each city were input as
exogenous (predictor) variables into separate NARX models for each
city using customized functions in Matlab's Neural Network Toolbox
(Beale et al., 2014). In addition to the set of input variables, NARX
models allow for a few different user-defined parameters: the training
algorithm, the number of neurons, and the number of delays. Two
commonly used NARX training algorithms in environmental research
are Levenberg-Marquardt (LM) optimization and Bayesian

Regularization (e.g. Guzman et al., 2017). Both of these training algo-
rithms were tested, with neither yielding a consistently better perfor-
mance across test cities, and the former ultimately was chosen due to its
use in previous research by the investigators (Lee et al., 2016). Since the
goal of this research is merely to demonstrate the ability of NARX
models in describing the temperature-mortality relationship rather than
to actually make predictions or hindcasts (as was the focus in Lee et al.,
2016), we do not train or run the NARX models in a closed-loop fashion.

The LM-based NARX method begins by dividing the time series into
three separate time-blocks of data, the training block (60%), the in-
ternal validation block (20%) and the independent testing block (20%).
The training block is used by the ANN to ‘learn’ the relationship be-
tween the 6 predictors (X) and the predictand (mortality) by iteratively
adjusting the weights (somewhat akin to beta coefficients) of the ANN
in a manner that improves the performance of the model from the
previous iteration (i.e. reduces the mean squared error (MSE) between
the observations and the model output). After each training iteration,
the resulting model is then simulated on the internal validation block of
data to determine if the MSE on that portion of the data also improves.
The NARX model continues iterating through these training and vali-
dation steps (known as epochs) until the MSE calculated from this in-
ternal validation data set fails to decrease (improve) after 10 successive
iterations, indicating that the model trained 10 epochs ago is the most
optimized model for both time-blocks of data. This internal validation
step helps reduce the likelihood that the model becomes overfit to the
training data set. Since the internal validation portion of the data
cannot be considered completely independent of the model (because it
is used to stop the training), the testing block is held out for in-
dependent, external assessment of the model's extrapolability by the
user.

The number of neurons (N) in a NARX model corresponds to the
amount of complexity the model can incorporate, and the number of
delays (D) are equal to the number of time-lags (i.e. days). The number
of delays can further be specified separately for the predictors (Dx) and
the previous values of the predictand (Dy). Similar to a regression, the
more total terms (T, with T≈ (X * N * Dx) + (N * Dy)) that are included
in the model, the more likely it is to improve performance, however, it
is also more likely to become overfit on the training data. This could
dramatically increase the time it takes to stop the training (using the
internal validation block of the data), and possibly prevent it. The op-
timum number of neurons and delays to incorporate into the model is
not known beforehand, and thus brute-force testing of different com-
binations of N, Dy, and Dx is necessary (Lee et al., 2016). Herein, it was
found that after 14 days of lag in Dy, there was very limited improve-
ment in model performance (MSE) by further increasing Dy, and thus Dy

was set to 14 across all locations. However, for N and Dx, each city was
tested with different combinations to see which combination yielded
the best performance (within the range of N = 1–10 and Dx = 1–4); the
resulting winning NARX model-architectures for N and Dx can be found
in supplementary material (Table S.1).

While the LM methodology described above helps prevent over-
fitting, a drawback is that it would result in conclusions being drawn
based only upon the last 20% of the dataset. To overcome this limita-
tion, Lee et al. (2016) used a block-jackknifing technique, whereby
multiple NARX models were fully trained and internally validated using
different settings for the partitioning of the time-blocks. Herein, we use
the same approach, using five separate settings in which a different
20% of the data was used as the testing-block (and by extension, a
different 60% for training and a different 20% for internal validation) in
its own NARX model. By chronologically stitching together the testing-
block of each of these five NARX models’ output time-series, this allows
us to re-construct an entire 36-year time-series of output data that can
be considered independent from training. We acknowledge that, since
the weather-mortality relationship is not stationary over time (e.g.
Sheridan and Dixon, 2017), there are limitations in terms of how
mortality is predicted using block-jackknifing, in particular for the

Fig. 2. NARX model performance metrics: MdAPE (top), R2IM (middle) and hit rate
(bottom) for each city. Note that the color scales are different for each figure, and red
indicates better performance in each figure (i.e. MdAPE is inverse). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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earliest and latest parts of the time series.
It is important to note that the training process begins using random

values for the input weights, leading to differences in the evolution of
the model through successive epochs and eventually to slight differ-
ences in each model's output (predicted mortality). Similar to Lee et al.
(2016), to account for this, an ensemble-modeling approach was used
whereby 10 separate NARX models were trained for ensemble-aver-
aging. When combined with the five different time-block settings de-
scribed in the paragraph above, these 10 model permutations result in
the final modeled mortality output for each city consisting of a synth-
esis of 50 different NARX models. Unless otherwise noted, all perfor-
mance metrics discussed below are those derived from this re-
constructed independent testing ensemble (RITE) output data set.

2.3. Estimating predictor variable importance

One drawback of NARX modeling is the complex interaction be-
tween the weights connecting each neuron to each predictor variable;
essentially each predictor variable (X) has N x Dx different weights
associated with it, which makes determining the ‘influence’ of each
predictor variable on the final model difficult to quantify directly
(Olden and Jackson, 2002; Lee et al., 2016). Similar to Lee et al. (2016),
in order to estimate the importance of each of the 6 input variables, the
final set of 50 NARX models for each city were each re-run (not re-
trained) 6 times, each time with a different one of the input variables

set to a constant (effectively removing it from the model). The change
in the member-model's performance (using median absolute error,
MdAE) was calculated and the median MdAE across these 50 models
was found. This statistic was then divided by the sum of the six median
MdAEs (representing the removal of each of the six variables), yielding
a percentage of relative influence of each of the six predictor variables
in each city's final NARX model-ensemble. While the national summa-
ries of variable importance are available in Table 2, city-by-city and
seasonally-relative statistics were computed as well and are available in
supplementary material (Table S.2).

2.4. Comparisons with DLNM

For four cities (Chicago, Los Angeles, Miami, and Houston), dis-
tributed-lag nonlinear models (DLNMs) were created using well-estab-
lished methods (e.g. Sheridan and Dixon, 2017; Gasparrini et al., 2010).
The DLNM was run in R using software package dlnm, and is set up as:

= + + +

+ +

SLog (mortality) intercept (AT05) S(AT17) S(AT )

S(EHF) ns (time),
anom�

�

where mortality is assumed to have a quasi-Poisson distribution, ns
(time) is a natural spline fit to the time series with 9 df per year, to
account for the season cycle and long-term trends, and S denotes a
cubic-spline fit to each of the four meteorological variables, with df =

Fig. 3. Nationally-averaged NARX-modeled anomalous mortality by lag day (0–28; x-axis) and ATanom percentile (y-axis) for winter (top left), spring (top right), summer (bottom left) and
autumn (bottom right).
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5. The lagged influence of these meteorological variables is assessed
over a 14-day period, by fitting a spline with 3 equally spaced knots.
Similar to Rocklöv et al. (2012), we tested several different permuta-
tions of degrees of freedom and model, with very minimal differences in
output. Fitted model values were exported for comparison. Since
DLNMs are not validated on a separate block of the time series, for a

more ‘apples-to-apples’ comparison with NARX models, the NARX-
based model performance results presented in Section 3.4 are based
upon the ensemble means of the training-blocks of data rather than the
RITE output data set.

Table 4
Mean daily NARX-modeled anomalous mortality by location. Statistics computed over the Lag 0–6 day period for heat, and Lag 0–13 day period for cold. Table is sorted from coldest to
hottest average annual apparent temperature. Cold days defined as the bottom 10%-ile of ATanom and heat days are defined as top 10%-ile of ATanom in each season. Darker red (green)
coloring indicates increasingly positive (negative) mortality.
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3. Results and discussion

The effectiveness of NARX modeling is demonstrated below in four
ways: the efficacy of the models using different model performance
metrics (Section 3.1), assessing the relative importance of the different
predictor variables in the models (Section 3.2), exploring the modeled
temperature-mortality relationship in a ‘more-traditional’ manner using
summary statistics and an examination of four different cities as ex-
amples (Section 3.3), and directly comparing NARX models with DLNM
(Section 3.4).

3.1. NARX model performance

The ability of the NARX models to mimic the actual observed daily
mortality in each city is measured using three percentage-based me-
trics: the median absolute percentage error (MdAPE) between actual
mortality and the RITE data set; the percentage-point improvement of
the r-squared (of the RITE data set vs. actual mortality) over that of the
simple 1-day autocorrelation of the actual observed mortality (R2IM);
and the hit rate: the percentage of the actual mortality ‘spike day’
(> 80th percentile) occurrences that were also ‘spike days’ (> 80th
percentile) in the RITE output. We chose these metrics largely due to
fact that these can be interpreted consistently across the cities in this
study; since the calculations used in these metrics result in statistics that
can be compared across cities with different base populations and rates
of demographic change.

On average, year-round MdAPEs across the country were 10.1%, but
model performance varies both spatially and temporally (Table 3,

Fig. 2). Overall, model performance as measured by MdAPE is best in
winter, and worst in summer. Spatially, no clear pattern is observed
with relation to different climate regions. Instead, generally the cities
with the largest populations performed best in terms of having the
lowest MdAPEs, as New York (4%), Los Angeles (5%) and Chicago (6%)
were the top three cities in year-round performance, while Albany
(15%), Hartford (14%) and Rochester (14%) ranked as the three worst.
This relationship between population and performance is unsurprising,
as a greater average daily mortality sample size allows a temperature-
based signal to emerge from the ‘background’ noise of all-cause mor-
tality.

In terms of R2IM, NARX models in every city show skill, as they are
able to improve upon a persistence-based model. Across the calendar
year, once again the cold season is better modeled than the warm
season, although the highest model improvement is observed in March.
Across all locations, the average improvement in the r-squared is 17%,
however, in comparison to MdAPEs, model performance with R2IM is
affected by more than population size. Nashville (24%), Portland (23%)
and San Antonio (23%) are the top 3, while large cities such as Los
Angeles (17%) and Chicago (20%), are near the national average.
Further, while many small cities (e.g. Albany, 6%; Rochester, 9%,
Buffalo, 11%) perform poorly using this metric, highly-populated New
York (14%) and Phoenix (12%) do as well.

All cities showed some accuracy in modeling the top 20% of mor-
tality days (‘spikes’), as no hit rate was below what would be expected
by random chance (20%). Nationally, mortality spikes were correctly
modeled 54% of the time, with NARX models in warmer-weather and
populous cities being the top performers for hit rates; Phoenix (71%),

Fig. 4. NARX modeled lagged (0–28 days) mortality response to summer heat days (calculated as days on which ATanom is in the top 10%-ile for the season) for Houston, Chicago, Los
Angeles and Miami. Note that the thresholds delineating these events are noted in the bottom left-corner of each image.
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New York (71%), Dallas (70%) and Atlanta (70%) performed best, and
cold-weather and less populated cities like Albany (34%), Rochester
(36%), and Buffalo (39%), performed worst. Temporally, spikes were
best predicted between December and April, with worse performance in
summer and autumn.

Interannual variability was also examined, with all 3 metrics gen-
erally improving throughout the 1975–2010 time period, especially
MdAPE and R2IM. Again, as population increases over time, so too does
the background mortality, likely leading to the improvement in NARX
model performance.

3.2. Predictor variable importance

Among the six predictor variables used to train the models, the three
temperature-based variables (AT05, AT17, and ATanom) played the most
prominent roles, as they collectively accounted for about 72% of the
influence across all 41 cities (Table 2). The linear trend variable is most
important in cities with the greatest population growth over the period
of study, including Phoenix, Orlando, Riverside, Atlanta, Sacramento,
and San Antonio (Table S.2, Supplementary material). The seasonal
cycle variable is of only marginal importance, largely since AT05 and
AT17 inherently mimic the seasonal cycle, and therefore, when it is
removed from the model, there is little impact on the final output. The
EHF played only a minor role in the outcomes of the NARX models,
though this is to be expected because it is only a relevant variable in a
small percentage of warm days.

Many cities have either AT05 or AT17 as much more important than
the other in terms of their influence on the model output, suggesting

that some cities’ temperature-mortality relationship is more sensitive to
either minimum (AT05) or maximum (AT17) temperature than the
other, but both play roles in influencing year-round mortality (Barnett
et al., 2010; Davis et al., 2016a). When broken down by season, the
ATanom variable is much more important in winter, while it is less im-
portant during the summer, when minimum temperature (AT05) is
more of a determining factor in the NARX model output. Barnett et al.
(2010) explored various temperature metrics in terms of their ability to
predict mortality, and found no clear ‘winner’ either geographically or
seasonally. Thus, this finding of minimum temperatures being key in
summer and ATanom being key in winter is somewhat surprising, though
some previous research has noted the wintertime association with re-
lative temperatures as opposed to absolute temperatures (e.g. Lee, 2015;
Ryti et al., 2016; Anderson and Bell, 2009; Gerber et al., 2006). Despite
the high degree of correlation that would otherwise suggest that the
relative importance of AT05 and AT17 should both be quite small (by
virtue of the way the metric is calculated), this spatial and seasonal
variability in the importance of both predictors results in the nation-
wide year-round average importance of both being high and largely
equal. This also highlights a caveat of using the methods outlined above
(in Section 2.3) to estimate predictor variable importance – because the
performance of the models is impacted by both the variable that is
removed (the real variable of interest) and the variables that remain,
gleaning information about any correlated predictors might be difficult.

3.3. NARX-modeled temperature-mortality relationship

The modeled temperature-mortality relationship is discussed below

Fig. 5. NARX modeled lagged (0–28 days) mortality response to winter cold days (calculated as days on which ATanom is in the bottom 10%-ile for the season) for Houston, Chicago, Los
Angeles and Miami. Note that the thresholds delineating these events are noted in the bottom left-corner of each image.
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in terms of the relationship between ATanom and percent anomalous
mortality relative to season and time in the entire time series. Percent
anomalous mortality was calculated by removing seasonal and secular
trends from the NARX-modeled mortality data in each city. We used the
same deseasonalization process described above (for ATanom) while also
removing a simple linear trend from each city's mortality data likely
influenced mostly by population changes. Note that this anomalous
mortality metric was not used in the NARX models themselves, just for
displaying the results in this section.

In winter, when averaged across all 41 locations, the greatest in-
crease in anomalous mortality is associated with the lowest ATanom at
2–4 days of lag (Fig. 3), while the greatest decrease in mortality is as-
sociated with the most anomalously warm conditions at the same lags.
In summer, mortality increases occur during the warmest ATanom days
and quickly declines thereafter (Lag 0–2), with anomalous mortality
eventually becoming negative after Lag 15. This phenomenon, some-
times referred to as mortality displacement or a “harvesting” effect
(Hajat et al., 2005), is a common finding in heat-related mortality re-
search, but as is also shown here, is not often associated with cold-
related mortality. Anomalously cool summer temperatures show large
decreases in mortality, especially at Lag 0. Spring and autumn show
traits of both summer and winter in terms of the relationship between
ATanom and mortality, as both warm and cold temperatures show in-
creases in mortality at the same lags noted above for summer and
winter, respectively, although not to the same magnitude. The largest
differences between these transitional seasons compared to summer
and winter is with heat-related mortality: the heat-effect at Lag 0 ex-
tends nearly to the 75th percentile of ATanom, and the Lag 0 rise in

mortality is quickly followed by a precipitous decrease in mortality at
Lag 2 and onward (whereas in summer, mortality displacement is de-
layed by over 2 weeks). There is limited research that explores tem-
perature-related mortality specifically in spring or autumn, however,
the results herein may be comparable with previous studies that have
noted early heat waves (i.e. late-spring to early-summer) and cold-
waves (i.e. late-autumn to early-winter) can be the most deadly (Allen
and Sheridan, 2015; Lee et al., 2014)

Geographic variability in the temperature-mortality relationship is
more subtle than seasonal variability. Table 4 shows the average
anomalous mortality for heat days (averaged over Lag 0–6 days) and
cold days (averaged over Lag 0–13) by location in each season. The
most noticeable geographic pattern is for summer heat days: with only a
few exceptions (e.g. Phoenix, Los Angeles, Denver, Minneapolis), the
warmest cities have some of the smallest increases in mortality; while
the coldest cities have some of the largest increases in mortality. The
four locations with the highest summer heat-related mortality are all on
the East Coast (New York, Hartford, Providence, and Boston). Spatial
variability in the relationship is also apparent in a more detailed ex-
amination of four US cities in different climate zones (Los Angeles,
Miami, Chicago and Houston; Fig. 4). Chicago shows the typical pattern
of large increases in heat-related mortality at Lag0–5, however, hot
days are actually related to a significant decrease in mortality in
Houston for nearly the entire 4 week period. Miami shows almost no
significant relationship between heat and mortality, while Los Angeles
exhibits significantly increased mortality for nearly 2 weeks after a heat
event. Interestingly, two of the warmest cities, Phoenix and Riverside,
have the greatest mortality increase in response to anomalously warm

Fig. 6. Same as Fig. 4, except for the DLNM results.
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weather in winter.
Mortality responses to wintertime cold days are more consistent

across the country, as 38 of the 41 cities have a mortality increase of at
least 1% in the two weeks after cold days, led by Atlanta (+4.1%). This

consistency is also exhibited in Fig. 5, with the peak increases occurring
around Lag 3 and tapering off slowly enough to remain significantly
positive for nearly four weeks in each of the four cities examined. Cities
in the Southeastern US appear to have the highest wintertime mortality
response to the coldest temperatures, as Atlanta, Houston, Nashville,
Tampa, Dallas, Orlando, and Miami all have at least a 2.1% increase in
mortality within the Lag 0–13 window (Table 4). This geographic
tendency for warmer locations to experience greater cold-related mor-
tality has been noted in previous research (Allen and Sheridan, 2015;
Lee, 2015).

3.4. Comparison with DLNM

NARX training-block output and DLNM models exhibit nearly in-
distinguishable temperature-mortality relationships in the four cities
examined (Los Angeles, Miami, Chicago and Houston; Figs. 6 and 7).
Their output time series are also nearly identical, with the correlations
between the two model outputs ranging from r = 0.95 (Chicago) to r =
0.99 (Houston and Miami). DLNMs perform slightly better in many
modeling metrics (Table 5) for these 4 cities, though these differences
are not universal and are generally small, especially with MdAPE (all
less than 0.2%). DLNMs perform best relative to NARX models when
examining R2IM, improving upon persistence by anywhere from 0.9%
to 3.1% points annually among these cities. The R2IM difference be-
tween the two techniques is most notable in the winter season, and
most similar in spring and summer. NARX models do perform well in
examining the ability of the models to identify spikes in mortality –
especially in Houston, where they outperform DLNM.

Fig. 7. Same as Fig. 5, except for the DLNM results.

Table 5
Seasonal and annual comparison of NARX and DLNM performance statistics for Chicago
(ORD), Houston (IAH), Los Angeles (LAX) and Miami (MIA).

R2IM DLNM NARX

ORD IAH LAX MIA ORD IAH LAX MIA

Winter 25% 22% 21% 22% 20% 20% 20% 19%
Spring 25% 21% 25% 23% 22% 21% 22% 21%
Summer 29% 21% 19% 23% 26% 21% 16% 21%
Autumn 21% 21% 23% 25% 17% 20% 20% 23%
Annual 28% 21% 23% 21% 25% 20% 22% 19%
MdAPE DLNM NARX

ORD IAH LAX MIA ORD IAH LAX MIA
Winter 5% 8% 5% 6% 5% 8% 5% 6%
Spring 5% 8% 5% 6% 5% 8% 5% 6%
Summer 5% 8% 5% 6% 5% 8% 5% 7%
Autumn 5% 8% 5% 7% 5% 8% 5% 7%
Annual 5% 8% 5% 6% 5% 8% 5% 7%
HitRate (80%) DLNM NARX

ORD IAH LAX MIA ORD IAH LAX MIA
Winter 58% 64% 65% 58% 56% 65% 62% 54%
Spring 53% 63% 52% 56% 54% 66% 51% 56%
Summer 41% 61% 39% 52% 39% 63% 38% 47%
Autumn 45% 66% 46% 46% 42% 67% 45% 46%
Annual 59% 65% 66% 64% 57% 67% 66% 63%
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It should be noted that comparisons between NARX and DLNM
should be viewed in light of the goals of each respective technique.
Whereas NARX aims to replicate the time series, DLNM aims primarily
to assess the dose-response relationship. Thus, NARX models need to be
validated to avoid overfitting and to have confidence in the model's
ability. However, DLNM models need not be directly validated on a
testing dataset to meet their aim of assessing the dose-response re-
lationship, and therefore, may or may not be able to ‘apply’ the model
to new predictor data presented to it. In other words, NARX models are
inherently constrained by the internal validation requirement; if en-
ough neurons were incorporated into a NARX model without con-
sideration of how it replicates the internal validation dataset, or if the
NARX model was trained on 100% of the time series (rather than 60%),
then NARX models would have a substantially higher performance.
Thus, this comparison of the two methods is not straightforward.

4. Conclusions

The aim of this research is to demonstrate the usefulness of a new
modeling methodology in biometeorological research that has gained
popularity recently in other environmental sciences: NARX models.
NARX models are ANN-based time-series models that need no a priori
assumption of the predictor(s)-predictand relationship, and are thus
well-suited to temperature-related mortality research where the re-
lationship is often lagged, nonlinear, and differs depending upon the
time of the year. Due to the flexibility of NARX models, one model can
be trained for the entire time series (i.e. all seasons) for a city and can
be easily modified to make predictions, prospectively making them
useful for weather-based health warning systems. NARX models are not
without limitations, however. Due to the fact that the ideal model ar-
chitecture is not known beforehand, to find the best model, the user
must assess many different options, and thus, the process can be com-
putationally expensive. Further, the complexity of the neuron connec-
tions in NARX models makes a direct interpretation of variable im-
portance within the model tenuous; however, an indirect attempt was
made herein to quantify this variable importance.

Across the 41 cities examined, NARX model performance varied
geographically and seasonally, and appeared best in larger cities. While
the best monthly hit rates and improvements in r-squared occurred in
March, when aggregated by season, models performed best in all me-
trics during the winter, and worst in summer. NARX models showed
skill in modeling mortality spikes, and improved upon using simple
persistence of the previous day's mortality, on average by 17% points
(with Nashville improving explained variance by 24% points). While
using multiple temperature-based variables to model these relation-
ships, it was also noted that on average, anomalous apparent tem-
perature was the most important temperature variable associated with
mortality, except in summer, when minimum apparent temperature
became the key variable for modeling mortality.

A traditional analysis of the time-lagged temperature-mortality re-
lationships in various locations also helped highlight the utility of the
method in biometeorological research. Output from the models dis-
played temperature-mortality relationships largely in agreement with
previous literature; primarily that the warmest summer days (at Lag
0–2) and the coldest winter days (peaking at Lag 2–4) correspond to
increases in all-cause mortality. The spring and autumn seasons showed
traits of both summer and winter temperature-mortality relationships,
but were generally weaker in magnitude. When compared among a
subset of 4 cities, NARX and DLNM each output highly correlated
mortality time series with nearly identical structures in their tempera-
ture-mortality relationships. Quantitatively, DLNM performed slightly
better by many performance metrics, though the differences between
NARX and DLNM modeling goals makes these comparisons indirect at
best.

While different in concept from other time-series modeling techni-
ques used in environmental health research, we believe that NARX

models offer advantages that outweigh their limitations and provide
additional diversity in modeling techniques that may be most effica-
cious depending on a project's goals. NARX models would be a suitable
choice for modeling various other complex, time-dependent relation-
ships in numerous other environmental applications, especially if the
goal of the research is to have a cross-validated replication (or pre-
diction) of a time series more-so than a better understanding of a dose-
response relationship.
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