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Abstract The coastal waters of the southeastern USA contain
important protected habitats and natural resources that are
vulnerable to climate variability and singular weather events.
Water clarity, strongly affected by atmospheric events, is
linked to substantial environmental impacts throughout the
region. To assess this relationship over the long-term, this
study uses an artificial neural network-based time series
modeling technique known as non-linear autoregressive
models with exogenous input (NARX models) to explore
the relationship between climate and a water clarity index
(KDI) in this area and to reconstruct this index over a 66-
year period. Results show that synoptic-scale circulation pat-
terns, weather types, and precipitation all play roles in
impacting water clarity to varying degrees in each region of
the larger domain. In particular, turbid water is associated with
transitional weather and cyclonic circulation in much of the
study region. Overall, NARX model performance also
varies—regionally, seasonally and interannually—with
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wintertime estimates of KDI along the West Florida Shelf
correlating to the actual KDI at » > 0.70. Periods of extreme
(high) KDI in this area coincide with notable El Nifio events.
An upward trend in extreme KDI events from 1948 to 2013 is
also present across much of the Florida Gulf coast.

1 Introduction and background

The coastal waters of the southeastern USA encompass
important habitats and resources for marine animals and
plants as well as for human beings. Within this system
are many marine and estuarine resources, including coral
reefs, beaches, seagrasses, wetlands, and fisheries that pro-
vide critical functions and value to tourism and the econo-
my (Causey 2002). However, data from the NOAA
National Centers for Environmental Information (2015) in-
dicate that this region has led the nation in negative eco-
nomic impacts of climate/weather disasters between 1980
and 2014, with much of the damage resulting from tropical
cyclones. One of the immediate impacts of these natural
disasters is on coastal water clarity, as substantial sediment
resuspension and coastal runoff often lead to significant
degradation in water clarity, thus affecting all marine ani-
mals and plants that rely on ambient light (see Short and
Wyllie-Escheverria 1996). Indeed, one of the long-term
goals of the Tampa Bay Estuary Program has been improv-
ing water clarity to foster seagrass growth through regulat-
ing nutrient releases, which has resulted in tremendous
progress (Greening et al. 2011, 2014). Monthly water clar-
ity data have been used as one of the inputs to form a
decision matrix to help make management decisions
(Janicki et al. 2000). Likewise, water clarity also has a
direct impact on coral reef health as it determines the
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amount of available light in both the visible and ultraviolet
wavelengths to the benthos (Barnes et al. 2015). Due to its
importance, assessment of the long-term trend of water
clarity in these environments is a priority.

The inherent role of climate on coastal water conditions
and processes is often best understood in the context of sin-
gular weather events and/or extremes in regional climate. For
example, changes in distribution patterns of chlorophyll, par-
ticulate and dissolved matter, and other bio-optical properties
across the southeastern and Gulf coasts are often the result of
regional events: tropical cyclones, extreme heat and cold
events, and winter storms (Lohrenz et al. 1999; Liu and
Weisberg 2005; Ault 2006; Hu and Muller-Karger 2007;
Conmy 2008; Lirman et al. 2011; Sheridan et al. 2013;
Pirhalla et al. 2014). Sheridan et al. (2013) used a synoptic
climatological classification to connect variability in atmo-
spheric circulation pattern frequencies across the southeastern
USA to anomalies of chlorophyll off the west coast of Florida
using Sea-viewing Wide Field of View Sensor (SeaWiFS)
data. Particularly evident were the statistically significant as-
sociations between cyclonic/anticyclonic circulation pattern
frequencies and chlorophyll levels across part of the study
region. While these correlations suggest short-term variability
in water parameters can be related to changes in atmospheric
circulation, yet unexplored are the impacts that climate change
trends have upon water parameters in the region.

Such analysis, however, is difficult due to lack of long-term
synoptic datasets of coastal water clarity. The use of satellite
observations is perhaps the only way to routinely provide
systematic assessment of coastal water changes; however, re-
liable, uniform data on water clarity is only available since
1997 with the launch of the SeaWiFS satellite. Even within
the last 20 years, satellite-derived water clarity data are only
available under clear skies, making the data set spatially and
temporally incomplete, rendering the evaluation of water clar-
ity trends particularly difficult.

To assess more properly the trends and spatiotemporal var-
iability in water clarity, in this paper, we utilize a novel ap-
proach to reconstruct a 66-year (1948-2013), daily-scale esti-
mate of water clarity for the coastal waters of the southeastern
USA. Specifically, we use the available historical observations
of water clarity, along with their statistical relationship to at-
mospheric circulation over the region to develop a non-linear,
neural network-based, time series model to recreate a com-
plete historical time series of water clarity.

2 Data and methodology
Non-linear autoregressive models with exogenous input
(NARX models) were chosen to define the relationship be-

tween climate and water clarity in each region. While consid-
erable detail is provided below, outlining the specific

@ Springer

methodology used and decisions made to optimize the
NARX models used herein, a detailed discussion of these
models is beyond the scope of this paper (please see: Maier
and Dandy (2000) for a thorough discussion of artificial neural
network models in general, Diaconescu (2008) for a discus-
sion on NARX modeling, and Beale et al. (2014) for a de-
scription of implementing NARX models in Matlab specifi-
cally). While not commonly used in applied climatological or
oceanographic research, the structure of NARX models still
contain a predictand variable that we aim to model (the time
series of a water clarity index in each region) and multiple
predictor variables (time-lagged climate-related variables) that
are used in the model itself. In the sections that follow, the data
used as predictand and predictors are discussed, followed by
the set-up of the NARX models. Due to the subdomain-scale
variability in the relationship between meteorological factors
and water clarity (Table 1), a separate model is produced for
each of the regions, as defined below.

2.1 Kd-index and regionalization

Water clarity in the study area (southeastern USA) was
defined through the calculation of a Kd-Index (KDI), de-
rived using SeaWiFS and Moderate Resolution Imaging
Spectroradiometer (MODIS, onboard the satellite Aqua)
data. K4 (\) (m™') is a measure of the attenuation of
downwelling light at a certain wavelength A (nm), which
defines how fast light disappears when it propagates
through the water. Light availability at a certain depth z
(m), referenced against the surface light, is proportional
to exp. (—Kg4-z). Higher Ky values indicate lower water
clarity. Level-2 remote sensing reflectance (R,s) data from
SeaWiFS and MODIS/A within the bounds of 24° to 31° N,
78° to 98° W were downloaded from NASA Goddard
Space Flight Center. Pixels with negative R, at any wave-
length were excluded from analysis, as were pixels identi-
fied by standard Level-2 processing flags (Patt et al. 2003,
see Barnes and Hu 2015 for specific flags used) and targets
deeper than 50 m. The standard K4 lee algorithm (Lee
et al. 2005, 2009) and the K4 lee modification optimized
for optically shallow water (Barnes et al. 2013) were ap-
plied to the mapped R, data to derive K4(488) (i.e., K4 at
488 nm) for optically deep and optically shallow targets,
respectively. A 5 x 5 median filter was applied to all
K4(488) scenes, whereby pixels were also excluded if any
previously masked pixels (either due to negative Rrg or
Level-2 processing flags) were within the 5 x 5 box with
the pixel of interest in the center. Using both SeaWiFS and
MODIS data, daily mean images were created for each day
from 1997 to 2013. From these mean images, mean and
standard deviation climatologies (spanning all years) were
calculated for each ordinal day (i.e., day-of-year). In the
creation of these climatologies, data from the preceding
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Table 1

Pearson bivariate correlation statistics between anomalous frequencies of each SSC weather type (top) and circulation pattern (bottom) and

KDI for each of the nine regions. Correlations are for winter months (December—February) only and are aggregated to the weekly level

DM | DP | DT | MM MT | MT+ | MT++ | TR
R1 | 0.07 | 0.11 |-0.04 | -0.02 | -0.06 | -0.13 | -0.10 | 0.01 | 0.17
R2 | 0.04 | 0.21 | 0.01 |-0.04 | -0.11 | -0.14 | -0.14 | -0.02 | 0.29
R3 |-0.03 | 0.05 | 0.07 |-0.02 | -0.13 | -0.06 | -0.04 | 0.00 | 0.29
R4 | 0.08 | 0.04 | 0.03 | 0.03 | 0.07 |-0.14 | -0.16 | -0.01 | 0.08
R5 | 001 | 0.14 -003| 0.19 | 0.19 [-0.27 -0.16 | -0.19 | 0.29
R6 | 0.12 | 0.16 | -0.01 | 0.15 | 0.21 |-0.26 -0.22 | -0.23 | 0.22
R7 | 030 | 0.02 |-0.05| 0.08 | 0.11 [=0.29 '-0.24 0.09 | 0.40
R8 | 0.24 | -0.02 [-0.07 | 0.03 | 0.04 |-0.20 | -0.16 = 0.05 | 0.29
R9 | 0.19 | -0.07 | -0.06 | 0.08 | 0.17 |=0.24 | -0.04 | -0.05 | 0.11

CP1 | CP2 | CP3 | CP4 | CP5 | CP6 | CP7 | CP8 | CP9 | CP10
R1 |-0.02 | 0.00 | 0.22 | -0.06 | -0.09 | 0.06 |-0.04 | -0.08 | -0.05 | 0.09
R2 | 0.16 | -0.07 | 0.16 | -0.09 | -0.03 | 0.19 |-0.07 | -0.10 | -0.18 | -0.05
R3 | 0.09 [-0.21 | 0.16 | -0.13 | -0.02 | 0.21 | 0.01 | 0.00 |=0.15 | -0.07
R4 | 0.09 | 0.04 | 0.06 |-0.13 | 0.00 | 0.21 |-0.07 | -0.12 | -0.05 | -0.07
R5 | 0.21 | 0.13 | 0.15 |=0.25 | -0.03 | 0.12 |-0.12 | -0.14 | -0.11 | 0.00
R6 | 0.24 | 0.20 | 0.08 |-0.13 | 0.01 | 0.00 |=0.22 | -0.10 | -0.13 | 0.03
R7 | 022 | 0.24 | 0.17 | -0.13 | 0.06 | -0.06 |=0.21 | -0.17 | -0.15 | 0.00
R8 | 0.13 | 0.25 | 0.11 |-0.10 | 0.01 |-0.09 |-0.13 | -0.09 | -0.05 | -0.01
RO | 0.00 | 035 | 0.21 | -0.07 | 0.07 |-0.13 | -0.14 | -0.14 | -0.07 | 0.00

Bold and underlined values indicate statistically significant (p < 0.05) correlations. Increasingly positive (negative) correlations are darker shades of red

(green)

and following 17 ordinal days were used. KDI were calcu-
lated for each pixel on each day in the time series as [(mean-
mean_climatology)/standard deviation_climatology].

In addition to the near-daily KDI used in the modeling
analysis below, monthly averaged KDI values for each grid
point in the domain were calculated for the purpose of strati-
fying climate-KDI models and results from over 260,000
pixels into nine more-manageable geographical regions.
Following a two-part clustering procedure common in synop-
tic climatology (Jiang 2011; Lee and Sheridan 2011; Sheridan
et al. 2013; Sheridan and Lee 2014), we used a t-mode de-
composition of the data (grid points as rows and months as
columns, with each cell, therefore representing a monthly KDI
value for a grid point) to perform an initial principal compo-
nents analysis (PCA) on the MODIS satellite data (2002—
2013), replacing any missing values with the mean. The 31
principal components (PCs) with eigenvalues greater than one
(accounting for 67.3 % of the variance in the data set) were
retained for use in a subsequent cluster analysis, using the
Two-Step Clustering component in SPSS Statistical
Software (SPSS, 2001). Multiple realizations of the cluster

analysis were undertaken with varying numbers of clusters/
regions, with nine regions ultimately being chosen, as it rep-
resented the most spatially cohesive and intuitive realization,
with the regions broadly corresponding to adjacent drainage
basin domains. These spatially coherent regions, based upon
observed patterns in KDI variance within the domain, formed
the basis for the regional boundaries demarcated in Fig. 1.
Note that while all optically shallow waters (those processed
using the modified Kd_lee; Barnes et al. 2013) clustered with-
in region 8, the boundary used for switching between the
standard and modified Ky algorithms is not the same as the
boundary of region 8.

Daily regional KDI were then calculated for each region
based on the mean value of all available pixels, generally well
below 100 % due to clouds and satellite coverage. Through
statistical trials, it was determined that if at least 5 % of pixels
in a region were available on a given day, the mean KDI of that
subset was not statistically different from the overall mean.
Thus, prior to further analysis, all days on which less than
5 % of the pixels were available in a region (eliminating about
13 % of the days with some pixels), were eliminated (marked as
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Fig. 1 The nine KDI regions and corresponding SSC weather stations

missing), leaving total temporal coverage of the KDI at about
67 % of days (the other 20 % are days which had no satellite
data). As cloud cover reduces satellite data availability and is
affected by atmospheric conditions, the circulation patterns and
weather types (discussed below) associated with clearer weath-
er conditions have a greater relative sample size of KDL

2.2 Circulation pattern data and classification
methodology

In order to classify atmospheric circulation patterns (CPs),
daily gridded mean sea-level pressure (SLP) data were ob-
tained from the NCEP/NCAR Reanalysis 1 project (Kalnay
et al. 1996) for the spatial domain bounded by 20° to 40° N
and 100° to 60° W, at a resolution of 2.5°x 2.5°, for all
days from 1 January 1948 through 23 August 2013. These
SLP data were then converted into spatial anomalies—
subtracting the daily, domain-wide mean SLP from the
SLP for each individual grid point on that day—thus, cre-
ating fields of SLP gradients that depict overall flow direc-
tion and magnitude within the domain.

@ Springer

Following the methodology detailed by Sheridan et al.
(2013) and similar to the regionalization process described
in the section above, these spatial anomalies of SLP (more
simply referred to as SLP hereafter) were then subjected to a
two-part clustering procedure whereby an initial s-mode-
based (days as rows, grid points as columns) PCA was under-
taken to reduce data dimensionality and yield orthogonal prin-
cipal component scores (PCs) necessary for clustering. The 10
PCs with eigenvalues greater than one (accounting for 96.1 %
of the variance in the data set) were retained for the second
part of the classification, whereby the Two-Step Clustering
component was employed, effectively classifying each day
in the data set into one of 10 circulation patterns based upon
the similarity of the shape of daily SLP-gradient patterns in the
domain (Fig. 2).

2.3 Other climate data
In addition to CPs, to incorporate the smaller-scale weather

conditions interacting with the ocean surface, two other
sources of climate data were used to help model water clarity
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Fig. 2 Composite averaged anomalous SLP for all days classified into each of the 10 circulation patterns (CPs)

in the region: surface weather types and precipitation. Daily
calendars of surface weather type data were obtained from the
Spatial Synoptic Classification (SSC; Sheridan 2002)
homepage (http://sheridan.geog.kent.edu/ssc.html) for the six
weather stations labeled in Fig. 1. The SSC uses four-times
daily values of six different near-surface meteorological vari-
ables in order to classify each day at a location into one of
several different multivariate weather types (WTs): DM (dry
moderate), DP (dry polar), DT (dry tropical), MM (moist
moderate), MP (moist polar), MT (+, ++) (moist tropical,
(plus, double plus)); TR (transition) signals a change between
two weather types. Since precipitation is not directly
accounted for in either CP or WT data, daily precipitation
amounts (PRCP) were obtained from the NOAA National
Climatic Data Center (now National Centers for
Environmental Information) for each of the same six weather
stations from which SSC data were obtained. In addition to
raw daily PRCP, a binary variable was created to demarcate
days on which PRCP > 20 mm as heavy precipitation events
(HPEs) for each location. All WT, PRCP, and HPE data are
obtained for the same 1948-2013 period as outlined above.

2.4 Potential predictors, missing data treatment, and input
variable selection

Potential predictors in the NARX model for each region in-
cluded dummy variables for each of the 10 CPs and the 10
retained PCs used in the classification of CPs. In addition,
each region’s potential predictors included PRCP, HPEs, and
dummy variables for each of the SSC WTs for the station
corresponding to each region (Fig. 1). Missing precipitation

data (and HPEs) for Key West Airport (EYW) for 19531957
were substituted with precipitation from the nearby Key West
City Bureau data record and for 3 days in September 1998
with data from Duck Key. Missing SSC data for EYW from
1948 to 1960 was filled with SSC data from Miami (MIA).
Missing precipitation data for New Orleans (MSY) on 2
May 1998 was set to 0 mm based upon inspection of nearby
station data.

Input variable selection (IVS) for each region was conduct-
ed using partial Spearman correlations (a variant on one of
many possible IVS procedures suggested by May et al.
2011) of the 5-day-prior moving averages between each of
the potential predictor variables and a “filled KDI.” Filled
KDI was computed to replace any missing actual KDI values
using simple linear interpolation between days available in the
actual KDI record for each region. Potential predictor vari-
ables for each region that showed significant (p < 0.001) par-
tial correlation with the filled KDI were selected as the final
predictors in the model for each region (see supplementary
material Table S1). Dummy variables for month are also in-
cluded in each region’s model to incorporate any important
seasonal interactions between predictors and KDI. As is stan-
dard when using NARX models, each potential predictor var-
iable is then normalized throughout the 1948-2013 period to
fit within the range of —1 to +1 (using the “mapminmax”
function in Matlab).

2.5 NARX model set-up and decisions

NARX models are time series models that incorporate the
autoregressive nature of KDI and that of the climate
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variables in order to model the non-linear relationship
between predictors and predictand. NARX models use
an iterative training process whereby weights assigned to
input variables and bias terms are iteratively adjusted to
improve model performance at each step. The entire
NARX model development process used herein was com-
pleted using functions in the Matlab Neural Network
Toolbox (version R2013b) and is outlined in Fig. 3. The
Levenberg-Marquardt backpropagation algorithm was
used for optimization during training, as it is among the
fastest backpropagation algorithms for feedforward net-
works (Mathworks 2014; Hagan and Menhaj 1994;
Beale et al. 2014), especially in Matlab (Mathworks
2014). All training of the NARX models in each region
was done on time-blocks of KDI and climate data from
the satellite record only (i.e., since September 1997).
Once fully trained, these models were then run (using
the finalized weight and bias terms learned during train-
ing) for the entire 1948-2013 time series.

Two user-defined parameters must be determined prior
to training each NARX model: the number of neurons in
the hidden layer () and the number of delays included in
the model (d). The former parameter indicates the degree
of complexity to be incorporated into the modeling frame-
work, while the latter simply indicates the amount of lag
(in days) that is to be incorporated into the time series
model for predictors and predictand. However, the ideal
settings for these parameters are not evident without exper-
imentation. Therefore, a model with each of the 16 possible
combinations of 2 =1to h=4and d =1 to d = 4 was
trained. Setting the maximum of both parameters (% and d)

Create Block-Jackknifed

Data Settings
Held-out for Testing = 1 year
Held-out for Validation = 1 year
Training = all remaining data

Open loop training of
neural network

Repeat for each setting of
consecutive testing and
validation years

Closed loop training of
neural network

Repeat until 10
stable models for
each setting have

been trained Closed loop simulation of

neural network model
(1948-2013)

Evaluate Model Stability

Fig. 3 Flow chart depicting the NARX methodology that is repeated for
each combination of number of delays, number of neurons, and each
region
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to 4 was one of several measures taken to prevent
overfitting, as each additional parameter (i.e., delays, neu-
rons, input variables) adds complexity, and the closer that
the total number of effective parameters is to the sample
size of the training data set, the more likely the model will
be overfitted (Maier and Dandy 2000, 2001). Since train-
ing proceeds using a random initialization (leading to
slightly different outcomes with each model), each of these
16 models were trained using multiple (10) permutations
(p), which will be used later for ensemble averaging.

Prior to training each model, all time series were divided
into three separate “time-blocks™ of data, representing the
training-, validation-, and testing-blocks of the time series.
Training-block data were used for the “learning” part of
neural network modeling where weights and biases of the
neural network were incrementally adjusted during each
epoch to improve (decrease) the mean squared error
(MSE) of the training portion of the data. After each ad-
justment of the model’s weights and biases, the updated
model was then run on the validation-block of the data
set. If, after 20 epochs of training and validation, the
MSE of the model run on the validation-block of the data
failed to improve (decrease), then the model with the low-
est MSE (i.e., the model trained 20 epochs ago) was select-
ed as the best model and training stopped. If the MSE of
the validation data set did improve, then training contin-
ued, and this iterative process continued in this manner
until this qualification was met (i.e., there was no better
model in 20). Incorporating an “internal validation” step in
this manner prevents overfitting of the model onto the
training-block of the data set (Beale et al. 2014), since it
was also the best model in 20 with the internal validation-
block of the data set. Further, the testing-block of the data
was held out from training (and internal validation), and
thus can be considered completely independent from the
training process, and model performance (e.g., Table 2 and
section 2.6) is quantified only using these testing-blocks of
the data set.

Since interannual variability impacted model performance,
each model was also run using 32 different settings for the
partitioning of the data into the time blocks of training, vali-
dation, and testing data sets, whereby training was completed
using all but two different year-long blocks of the data set,
with 1 year held out each for validation and testing purposes.
Thus, for each region, 5120 different models were trained, one
for each combination of neurons, delays, time-block division
settings, and permutations, equating to over 46,000 models
across the entire nine-region domain.

Each of these models was first trained using an “open-
loop” format on data from 1997 to 2013 (covering the
availability of SeaWiFS and MODIS data); meaning, actu-
al KDI values at previous lags (delays) are used during the
training process. While this would be ideal for applications
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Table 2 Model evaluation statistics based upon ensemble testing data time series (1998-2012) for each region

Month R1 R2 R3 R5 R6 R7 R8 R9
Jan 0.578 | 0.512 | 0.456 | 0.304 | 0.758 | 0.451 | 0.673 | 0.472 | 0.432
Feb 0.531 | 0.483 | 0.401 | 0.353 | 0.733 | 0.451 | 0.647 | 0.441 | 0.396
Mar 0.515 | 0.491 | 0.373 | 0.370 | 0.695 | 0.454 | 0.646 | 0.361 | 0.407
Apr 0.472 | 0.401 | 0.294 | 0.329 | 0.556 | 0.396 | 0.567 | 0.340 | 0.389
May 0.358 | 0.295 | 0.226 | 0.323 | 0.413 | 0.351 | 0.431 | 0.334 | 0.395
Jun 0.257 | 0.157 | 0.157 | 0.312 | 0.227 | 0.288 | 0.265 | 0.296 | 0.291
Jul 0.281 | 0.133 | 0.166 | 0.195 | 0.247 | 0.280 | 0.289 | 0.351 | 0.281
Aug 0.460 | 0.266 | 0.259 | 0.099 | 0.276 | 0.184 | 0.348 | 0.386 | 0.399
Sep 0.524 | 0.386 | 0.356 | 0.134 | 0.438 | 0.252 | 0.467 | 0.386 | 0.402
Oct 0.596 | 0.498 | 0.454 | 0.329 | 0.616 | 0.417 | 0.588 | 0.424 | 0.398
Nov 0.629 | 0.540 | 0.492 | 0.371 | 0.721 | 0.490 | 0.680 | 0.470 | 0.381
Dec 0.624 | 0.526 | 0.492 | 0.340 | 0.745 | 0.500 | 0.727 | 0.471 | 0.403
All 0.470 | 0.414 | 0.333 | 0403 | 0.563 | 0.341 | 0.531 | 0.377 | 0.353

Best year 0.591 | 0.621 | 0.490 | 0.505 | 0.723 | 0.633 | 0.659 | 0.528 | 0.600
Worst year 0.381 | 0.190 | 0.166 | 0.137 | 0.427 | 0.155 | 0.326 | 0.272 | 0.168
Hit rate 45% 44% 38% 46% 50% 41% 50% 37% 38%
MdAE 0.326 | 0.381 | 0.348 | 0.391 | 0.292 | 0.375 | 0.262 | 0.264 | 0.345
MAE 0.426 | 0.479 | 0.416 | 0.494 | 0.404 | 0.488 | 0.408 | 0.385 | 0.455

Hit rates are the percent of extreme KDI events (days on which observed KDI and modeled KDI > 80th percentile of their respective time series)
predicted by the model. Note that monthly and best/worst year correlations are based upon 89-day centered moving correlations averaged for each
month/year. Overall correlations are traditional. Cells with increasingly darker gray coloring signify increasingly stronger correlations

MdAE median absolute error, MAE mean absolute error

where previous values of KDI are available, the goal of the
research herein was to extend the KDI back to 1948 using
climate as the driver. However, reliable estimates of KDI
were only available back to the beginning of the SeaWiFS
time series (September 1997), and thus a key component of
the model—the previous days’ values of KDI—would be
missing from 1948 to 1997. Thus, after training was com-
pleted on open-loop, each model was then trained using a
“closed-loop” format initialized from the open-loop
model’s final state. A closed-loop format of the model
feeds back the previous days’ values of modeled KDI into
the model rather than the actual KDI during the training
process in order to incorporate the autoregressive nature of
KDI. While the closed-loop training could have been com-
pleted without first using the open-loop format, the select-
ed method resulted in a reduction of computational time by
a factor of about 60 in preliminary analyses, yielding a
possible savings of over 68 weeks of modeling time in
the final analysis. After training on closed-loop over the
1997-2013 portion of the time series, each fully trained
model was then run on closed-loop for the entire 1948—
2013 time period. Since closed-loop simulation would fail
if there were any missing predictor variables, any missing
SSC-WT days (only 0.6 % of all days/locations) were set
to 0 for each WT’s dummy variable on that day.

Preliminary analyses revealed that a small percentage of
individual models’ KDI output varied around an implausibly
high or low KDI value over the course of years to decades.
Thus, once closed-loop simulation was complete, any model
with an average annual KDI > 1 or KDI < —1 for any calendar
year between 1948 and 2013 was discarded and another was
fully trained through all of the aforementioned steps.

Once all 5120 models were fully trained, the ideal number
of neurons and delays for modeling KDI in each region were
selected (i.e., a winning model architecture; Table S2 in sup-
plementary material). The winning model architecture was
determined by averaging the MSE of the different testing-
block portions of the 320 (10 permutations x 32 settings)
closed-loop trained models for each of the 16 possible model
architectures (2 = 1:4 and d = 1:4), with the lowest averaged
MSE of the 16 determining the winner. This winning set of
320 models was then averaged on a day-by-day basis (ensem-
ble mean) and used as the final model-ensemble time series
and the reconstructed KDI from 1948 to 2013 for each region.

2.6 Independent model validation using
a block-jackknifing technique

In addition to providing a temporally robust determination
of the winning model architecture, the block division of
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Fig.4 Final model ensemble time series of the 181-day centered moving average actual (gray line, right axis) and modeled (black line, lefi axis) KDI for

each region, September 1997—September 2013

the data into 32 different time-block division settings also
allowed for an independent evaluation of ensemble model
performance across the entire 1997-2013 time series by
using a “block-jackknifing technique.” Since each of the
32 settings used one of 16 different year-long periods as a
testing-block, each year-long period was used exactly
twice specifically as the independent testing-block.
Additionally, each setting of the winning model
underwent 10 permutations. Together, this yielded 20

separate testing-block representations of each day from
1997 to 2013 that can be considered independent of the
model-training process. We chronologically reconstructed
the output of these testing-block time periods of each of
the 320 closed-loop simulation models into a set of 20
time series that span the entire 1997-2013 period and
calculated day-by-day (ensemble) means of these time se-
ries (i.e., an independent testing-block time series) and
report these results below as well. Important to note is

Table 3  Estimated relative importance of predictor variables in the final ensemble model for each region

RI (%) R2 (%) R3 (%) R4 (%) R5 (%) R6 (%) R7 (%) RS (%) R9 (%) AVG (%)
CPs 0 13 20 5 24 4 3 4 7 10

WTs 7 29 37 60 52 77 71 48 14 46

PRCP 85 39 - - - - 23 36 78 32

HPE - - 16 2 - - - - - 0

PCs 8 20 27 33 24 19 3 13 2 12

Blank cells indicate that the variable was not selected for use in that region’s models
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that this testing-block time series is different from the
final model ensemble time series, as the former was re-
constructed from the separate testing-block portions of the
data sets, while the latter was made up of the entire time
series (i.e., the training-, validation- and testing-block por-
tions of the time series) for each of the 320 model ensem-
ble members. Correlation analyses with the chronological-
ly reconstructed testing-block (“block-jackknifed”) time
series, therefore, give an estimate of the confidence with
which the 66-year historical KDI time series can be
modeled.

3 Results and discussion

3.1 Circulation patterns, SSC types, and correlations
with KDI

Ten circulation patterns (CPs; Fig. 2) were identified,
spanning the range of weather conditions observed across
the domain. These include several strong cyclonic

patterns: centered in the Ohio River Valley (CP 6), the
Gulf of Mexico (CP 3), the Southeastern Coast (CP 2),
and the Mid-Atlantic (CP1). Strong continental anticy-
clones can be observed in CPs 4, 5, and 10; CPs 7, 8,
and 9 are all manifestations of the Bermuda High.
Correlations between weekly KDI and the circulation pat-
terns show a broad tendency for increased KDI (i.e.,
poorer water clarity) associated with the cyclonic patterns
and decreased KDI for the anticyclonic patterns
(Table 1), though considerable spatiotemporal variability
exists, with the strongest correlations observed in the
winter months. High KDI values could be the result of
high chlorophyll-a (or colored dissolved organic matter,
CDOM) concentrations in association with cyclonic con-
ditions and windy weather that churn up nutrients or in-
crease nutrient load via runoff, a result noted in Sheridan
et al. (2013).

Correlations between SSC frequencies and weekly-
aggregated KDI also yield statistically significant results
across multiple categories. Generally, the WTs associated
with more stagnant conditions (MT, MT+, MT++) are
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associated with clearer water (Table 1), while rainier pat-
terns (such as MM or MP) are associated with higher KDI
values. The TR type has the greatest positive correlations
and the most significant results, particularly along the
west coast of Florida, unsurprising considering the inher-
ently unstable and windy conditions of the TR weather
type would likely churn up benthic sediments in the coast-
al zone, decreasing water clarity.

3.2 Development and validation of the KDI time series

In comparing correlations between observed KDI and
modeled KDI (with the testing-block time series), the model
performed considerably better in all seasons except summer
(Table 2), with peak ability from November to March.
Overall, model performance is best off of the west coast of
Florida (Regions 5 and 7) and worst in the waters downstream
of the Mississippi River (Region 3), whose length and catch-
ment area results in longer lags and much greater upstream
influence, though considerable variability exists spatially as
well as interannually. Of particular note is the performance
of the NARX models in regions 5 and 7 in winter, where
correlations between the model and observed KDI exceed
r=10.70 in some months. Time series (e.g., Fig. 4) show the
broad agreement between the observed and modeled data; the
model tends to render the general patterns well, though under-
estimates daily variability, particularly in extreme events, as
evidenced by the difference between the mean absolute error
(MAE) and the median absolute error (MdAE; Table 2). Hit
rates (defined as the match percentage between days that were
above the 80th percentile of observed KDI and above the 80th
percentile of NARX-modeled KDI) were near 50 % for
Regions 5 and 7 and between 37 and 46 % for other regions.

Due to the complex and interactive nature of NARX
modeling, evaluating the importance of an individual pre-
dictor variable in a model is not straightforward (see

Olden and Jackson 2002). However, in order to estimate
this importance, each of the final 320 ensemble members
in each region were re-run leaving a single predictor var-
iable set to a constant, and the change in the performance
(MSE) of the model was noted. This process was repeated
for each of the predictors in each model, the change in
MSEs were averaged across the 320 members in a region
and made into a percentage relative to the summed MSE
differences of all other predictors. In short, this yields a
relative importance of each predictor among all other pre-
dictors in a region (Table 3). Among the predictors, SSC
WTs play the most prominent role in the regions spanning
the Louisiana coast to the Florida Keys. Raw precipitation
is most important in the outer regions of the project do-
main (Texas and East Florida especially), but HPEs figure
prominently only in region 3 (the Mississippi River area).
The CP classification plays at least a moderate role in
model performance in every region but region 1, and its
estimated importance is high in region 5, one of the
better-modeled areas. It is important to note that in
NARX modeling, previous-day (s) values of KDI are also
used to model KDI. While the relative importance of
lagged KDI cannot be determined using this method, it
likely plays a substantial role as well.

3.3 Reconstructing the historical KDI

As noted in the methodology above, all NARX models were
run for the full period for which historical atmospheric data are
available (since 1948; Fig. 5). Long-term patterns vary across
the regions in terms of extreme KDI events (i.e., >80th
percentile; Fig. 6). Across the western Gulf, in Regions 1, 2,
and 3, extreme KDI events peaked in the 1970s and 1980s.
Contrastingly, across the regions east and south of the Florida
peninsula (Regions, 7, 8, and 9), there appears to be a slight
decreasing trend in the long-term frequency of extreme KDI

Fig. 6 Decade-by-decade counts 120
of extreme KDI events (>80th
percentile) in the NARX-modeled

reconstruction time series for each
region

Mean count of extreme KDI days per year

R1 R2 R3

W 1950s
M 1960s
m 1970s
m 1980s
1990s
2000s

R4 RS R6 R7 R8 R9

Regions
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Table 4 Region-by-region association between ENSO and wintertime NARX-modeled KDI, 19502012

Rank Year Rl R2 R3 R4 RS R6 R7 R8 R9

1 1983 9 1 1 9 4 4 1 1

2 1998 14 2 2 1 3 11 2

3 1992 56 35 37 10 18 28 42 51 30

4 1987 54 9 17 7 11 5 5 7 3

5 1958 26 3 6 6 2 1 2 2 7
Spearman rho 0.170 0.647 0.467 0.335 0.561 0.576 0.578 0.483 0.673

The left column indicates the rank of the top 5 years of the bimonthly Multivariate ENSO Index (MEIL; NOAA 2015) as averaged from December—
January through March—April of the year indicated in column two. The nine rightmost columns have the corresponding rank of the monthly averaged
modeled KDI for each region for the December—April period of the corresponding years (December of the prior year), with a rank of 1 being the highest
averaged KDI of the 63 years ranked. Bottom row shows Spearman’s rank correlations of the MEI and the monthly modeled KDI values for the months

described above, throughout the entire 19502012 period

events. Only in Regions 4 and 5, across the West Florida
Shelf, is a general upward trend in extreme KDI events ob-
served. This trend may be associated with the increased win-
tertime frequency of cyclonic CPs (CPs 1, 3, and 6) and TR
weather types (at the Tampa weather station), and the secular
decline in winter MT weather type occurrences in these loca-
tions over the 1948-2012 period, though trends in other CPs
and WTs confound these relationships. Notably strong El
Niflo Southern Oscillation (ENSO) winters (e.g., 1957-58,
1982-83, 1997-98) as defined by the Multivariate ENSO
Index (MEI; NOAA 2015) correspond with the greatest
sustained, short-term increases in modeled KDI in most re-
gions east of Texas (Table 4). This is especially interesting
considering the models’ relative strength in winter compared
to other seasons, and the fact that no ENSO index was directly
incorporated into modeling.

4 Summary and conclusions

This research examines the impact of meteorological variabil-
ity on a day-to-day water clarity index (KDI) in the coastal
waters off the southeastern USA. Analyses of individual var-
iable relationships to the KDI show that cyclonic circulation
and transitional atmospheric situations coincide with turbid
water, while stagnant, stable conditions lead to greater water
clarity. A novel modeling methodology using an ensemble of
non-linear autoregressive models with external input (NARX
models) allowed for a 66-year reconstruction of the KDI in
each region. Overall, surface weather types showed the
greatest influence on model performance especially in the re-
gions off the west coast of Florida. While total precipitation
figured prominently into the NARX models in over half of the
regions, specific heavy precipitation events did not (Table 3).
Model performance during periods of actual satellite observa-
tion (1997-2013) varies by season, region, and interannually,
but generally, models perform best in the winter and for the
West Florida Shelf, lending more confidence in the historic

reconstructions in these regions and seasons. Analyses of the
historical reconstruction revealed higher KDI values during
winters with noted ENSO events. While an original premise
of the research was to investigate the applicability of water
clarity as an indicator of climate change, noticeable upward
trends in extreme KDI events were only present in two regions
(regions 4 and 5).

Non-climatic factors (e.g., land use and land cover chang-
es) undoubtedly account for a significant portion of KDI var-
iability and thus explain the low correlations for some regions.
Of particular note are changes in water management strategies
over the latter half of the twentieth century that impact river
discharge into the Gulf, especially diluting the effect of pre-
cipitation on KDI variability in some locations, for example,
the managed diversion of Lake Okeechobee runoff into
Florida Bay starting in 1980 (see Fourqurean and Robblee
1999; Barnes et al. 2014). Another potential limitation of the
research in finding a consistent climate change signal is the
relatively short period-of-record of KDI data, especially rela-
tive to the longer-term trends indicative of climate change.
The intermittent nature of the data may also limit the ability
of'the NARX models to incorporate enough lag into the model
in each region. This likely leads to precipitation (and HPEs)
having a less prominent role in the final models than may be
expected, as the lag between precipitation event and KDI re-
sponse might not be within the lag periods incorporated into
the models. Combined, these last two factors (period of record
and the intermittent nature of KDI) limited the sample size,
and thus the complexity (via the maximum number of neu-
rons) that could be safely incorporated into any region’s
ensemble-member models. With a greater sample size of
KDI, more complex models could be constructed, perhaps
yielding better results. Further, cloudy conditions are most
often the cause of missing KDI data, and thus, the models
trained herein may be slightly biased towards days with clear
skies, as would any water clarity study using such data.
However, by incorporating thousands of individual pixels into
regions as the unit of study (including the clear pixels in an
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otherwise cloudy image), the effect of this bias is thought to be
fairly limited.

Despite these limitations, the novel NARX modeling meth-
odology and the use of synoptic weather types and circulation
patterns showed promising results, especially in vital ecosys-
tem regions along the West Florida Shelf. Future research will
aim to further refine these models based upon the availability
of new KDI and climate data, incorporate anthropogenic fac-
tors into the models where such data are available, and trans-
port this methodology to investigate water clarity in other
locations. Further, NARX modeling is easily adapted to make
multi-step-ahead predictions using the closed-loop frame-
work; hence, mid- to long-range forecasts of water clarity
using forecast weather data is another likely future avenue,
as this could provide valuable information to ecosystem man-
agers in these regions.
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