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Abstract: Many previous studies have looked into the relationship between asthma and individual weather

variables, but comparatively few have looked at this relationship using holistic weather types (WTs). Utilizing

the Spatial Synoptic Classification, this research considers up to 6 days of lag time while investigating the

asthma-to-WT relationship in two age groups (under 18 and 18 and over) throughout New York State. Results

indicate that a cold and dry WT in autumn corresponds to increased asthma admissions and spike days in

admissions in New York City (NYC) for the school-aged population, while hot and dry WTs in summer

correspond to spike days in asthma admissions in both age groups. However, results vary considerably for

other regions, seasons and WTs, and spike day analysis yields clearer results than the analysis of total

anomalous admissions. When stratified by multiple regions and age groups, the sample size of daily asthma

admissions is a limiting factor outside of NYC.
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INTRODUCTION AND BACKGROUND

Asthma affects nearly 300 million people globally and some

11% of the United States (US) population (Skrepnek and

Skrepnek 2004), and is the most widespread chronic disease

among children (Bryant-Stephens 2009). Undoubtedly,

asthma exacerbations substantially affect the quality of life

of the patient (Andersson et al. 2003). However, they are

also estimated to cost over $37 billion annually in the US

(Kamble and Bharmal 2009), and spikes in asthma-related

hospital admissions (ARHAs) are also accompanied by

additional stress to healthcare systems (Peters et al. 2006).

In New York State (NYS) alone from 1995 to 2006, there

were over half a million ARHAs—with the vast majority

(over 82%) of those being in the New York City (NYC)

area. In 2007, the cost of ARHAs was over $535 million

statewide—a 70% increase from just 10 years before (New

York State Asthma Surveillance Summary Report 2009).

While asthma exacerbations are dependent on a

number of factors, due to a strong seasonal trend in

ARHAs, the relationship of weather to asthma has received

considerable attention. From a physiological standpoint, air

temperature and humidity affect lung function. Koskela

(2007) notes that cold air can trigger symptoms of asthma

by, in effect, helping to evaporate surface fluid in the air-

way. This cooling and drying of the airway contributes to

bronchial constriction (Bougault et al. 2009). Supporting

these conclusions, in a laboratory setting, Mathur et al.

(1993) found that any combination of cold and/or dry air
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significantly reduced peak expiratory flow rate in asth-

matics, while warm and humid air significantly raised it.

These results have spurred several research projects

aimed specifically at finding relationships between indi-

vidual weather variables and asthma admissions. The

majority of research looking into the relationship between

asthma and weather are in agreement in finding that low

temperatures are related to increases in a variety of asthma-

related complications (May et al. 2011; Yuksel et al. 1996;

Piccolo et al. 1988; Whittemore and Korn 1980; Beer et al.

1991; Greenburg et al. 1966). In addition to low tempera-

tures, other meteorological conditions have been found to

be associated with increased levels of asthma, including

humidity (Ehara et al. 2000; Mireku et al. 2009; Santic et al.

2002; May et al. 2011; Priftis et al. 2006), thunderstorms

(Girgis et al. 2000; Marks et al. 2001), and pressure (Priftis

et al. 2006; Ehara et al. 2000; Garty et al. 1998; Goldstein

1980) among others. Though these studies have all found

significant relationships between asthma and meteorologi-

cal parameters, results have varied in the direction of some

of the correlations, in different study areas, in different

seasons, and by different demographics. Further, seasonal

trends in asthma have been linked to a number of factors

that are not related to weather at all (such as healthcare

administrative decisions, socio-economic status, and the

timing of the beginning of the school year), in addition to

factors indirectly (e.g., pollen and pollution levels) and

directly linked to weather (Chen et al. 2006; Lin et al. 1999,

2011; Johnston and Sears 2006)

While most of the climatological studies above took an

interest in the association of asthma with individual

weather variables, the daily weather presents itself not just

as one single variable, but rather as a weather situation

comprised of multiple weather variables—and it is this

weather situation to which an individual is ultimately

subjected. So, while some associations certainly exist

between asthma and temperature or humidity, what are the

synergistic effects of temperature, humidity, wind speed,

cloud cover, precipitation, pressure, and other weather

variables on asthma? How do different weather types (WTs)

impact asthma admissions? These questions are best

approached using synoptic climatological methods.

The field of synoptic climatology is based on statisti-

cally relating the atmosphere to a particular surface event

(Yarnal 1993). By creating classifications of meteorological

variables over a wide spatial scale and/or a long time scale,

synoptic climatologists define distinct, holistic atmospheric

states that can be easily interpreted and associated with a

surface event of interest. Synoptic climatological methods

have been employed in myriad research papers looking at

the relationship between climate and human health (e.g.,

Kalkstein and Greene 1997; McGregor 1999; Sheridan and

Dolney 2003; Morabito et al. 2006; de Pablo et al. 2009;

Davis et al. 2012; Sheridan et al. 2012). Despite the utility of

synoptic methods in climate research on human health,

however, very little research has been undertaken specifi-

cally looking at the relationship of asthma to different

synoptic climatological WTs (Jamason et al. 1997; Nastos

et al. 2006; Hanna et al. 2011).

Using the Spatial Synoptic Classification (SSC)

(Sheridan 2002) and incorporating 6 days of lagged

effects, the goal of this paper is to examine the rela-

tionship between ARHAs and WTs throughout all of

NYS across all seasons. This research could help public

health officials prepare for days with potentially high

numbers of ARHAs.

DATA AND METHODOLOGY

Asthma Admissions Data and Considerations

Respiratory-related hospital admissions data were provided

by the New York State Department of Health for the period

1995–2006. All cases with a principal diagnosis ICD code of

493.xx were defined as asthma related and were included in

further analyses. Each individual ARHA case was first

partitioned into one of two age groups: under 18 (U18) and

18 and over (O18). Each case in these two age groups was

then grouped into one of seven regions based upon the

county in which the patient resided (Figure 1), and sum-

med by date, to get a daily tally of ARHAs for each region

for both age groups. The last 7 days of 2006 were omitted

from further analysis due to data quality issues. Cases with

missing county or age information were also omitted from

further analysis (representing 0.6% of all cases).

Two age groups were selected to maintain an adequate

average daily sample size of ARHAs. The cut-off point

between the two age groups examined herein was chosen in

order to group the school-aged population separately from

the older population as previous research suggests the

timing of the autumn peak in admissions could be linked to

the beginning of the school year (Johnston and Sears 2006;

Lin et al. 2011). Regions were selected by each county’s

proximity to the weather stations for which the SSC

(described below) is available, and seven regions were
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ultimately created: Albany (ALB), Binghamton (BIN),

Massena (MAS), Buffalo (BUF), NYC, Rochester (ROC),

and Watertown (WAT; Figure 1).

Climate Data and Considerations

Synoptic climatological relationships to ARHAs are based

upon the SSC—a specific type of synoptic climatological

method (outlined in Sheridan 2002). The SSC uses a suite

of six meteorological variables at a 4-time daily resolution

to classify distinct daily WTs on a station-by-station basis.

Although cloud cover, pressure, wind speed, and wind

direction are also included in the classification process, the

WTs are most weighted by their temperature and humidity

characteristics, and are named as such—dry polar (DP),

dry tropical (DT), dry moderate (DM), moist polar (MP),

moist tropical (MT), moist moderate (MM), and a tran-

sitional (TR) WT. While used in some previous SSC

research, across NYS as a whole, the moist tropical ‘‘plus’’

(MT+) subdivision—a very warm subset of MT days—is

relatively rare, and hence all MT+ days were simply

re-coded to be MT. In addition, the definition of these WTs

is relative to the season and the location of the station.

Daily SSC classifications for each of the seven stations (one

for each region of NYS) were obtained from the SSC

website (http://sheridan.geog.kent.edu/ssc.html) for the

1995–2006 time period.

Exposure Indicators

Two indicators were used in order to examine the WT-to-

ARHA relationship—spike days in ARHAs and anomalous

ARHAs. These two indicators together represent a robust

gauge of the WT-to-ARHA relationship and assist in com-

parison purposes with previous literature (namely Jamason

et al. 1997). These two metrics were examined on a season-by-

season basis (March–May is spring, June–August is summer,

September–November is autumn, and December–February is

winter), and separately for each age group and each WT.

Spike days in ARHAs indicate dates on which there are

substantial (defined below) increases in ARHAs above the

average number of ARHAs for that date. This metric is

expressed in the results as a standardized spike day ratio

(SSDR) of actual spike days over expected spike days. Thus, an

SSDR of 2.00 would indicate that the number of spike days

that actually occurred under that WT is twice the expected

number of spike days (calculated from the equation below).

Anomalous ARHAs indicate the total number of raw

daily asthma admissions above or below the average

number of admissions for that date. Average numbers of

daily ARHAs are computed separately for each region as

Figure 1. The locations and airport

codes of the SSC stations used in the

research and the delineation of the

regions in NYS, United States.
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well, and are explained below. This metric is expressed as a

percentage difference from the mean over a 3-day period

(3dARHAs; explained in ‘‘Incorporation of a Lagged

Effect’’ section below).

Calculation of Average Daily ARHAs and Anomalous ARHAs

A primary focus of the current study is on anomalous

ARHAs in each region. However, due to strong seasonality

in the ARHA data, a large undertaking in the research was

to develop a methodology to accurately derive a seasonal

signal from which anomalous ARHAs could be calculated;

the results presented below are highly dependent on the

specific methodology chosen. These cycles, however, are

not consistent across all age groups, as the strongest cycle is

noticed in children, and the seasonality decreases with age

to the point of almost no seasonal cycle in the elder age

groups (Chen et al. 2006; Baibergenova et al. 2005).

The seasonal signal of average daily ARHA values was

calculated separately for each age group and region

according to the following method. First, a 14-day centered

moving average of ARHAs (14Davg) was found for each day

to help account for both the seasonal trend and a time-series

trend in the data. This moving average was comprised of the

7 days before and the 7 days after Day 0 (the day being

analyzed), excluding Day 0. The exclusion of Day 0 in the

14Davg helps to mitigate the possibility of a high number of

ARHAs on Day 0 from unduly affecting the moving average

(and thus, the daily anomaly as well). Further, the average

daily value not only needed to be derived equally from days

before Day 0 and days after Day 0 but also needed to remain

a multiple of 7 to prevent the introduction of an artificial

day-of-the-week (DOW) bias into the data.

While the selection of a multiple-of-7 smoother does

prevent the introduction of further (artificial) DOW bias in

the anomaly calculation, it does not explicitly remove a

significant DOW bias that already exists in the ARHA data.

Thus, in order to completely account for this DOW cycle in

ARHAs, the second step in the method was to calculate

DOW multiplier (DOWm) for each of the 7 DOW. The

DOWm was derived by finding the average daily value of

ARHAs for each DOW in the time series and dividing that

number by the average daily value of all ARHAs in the time

series. Thus, if Mondays had twice as many ARHAs as the

actual average, then the standardized value of each Monday

was multiplied by two. Like the 14Davg, the DOWm was

also derived separately for each region and age group.

The third step in the process was then to multiply the

DOWm by the 14Davg for each day in the time series to get

the mean daily values (MDV). In the final step of the

process, MDV was subtracted from each of the raw daily

ARHA values to obtain the anomalous number of ARHAs

for each day.

This entire four-step process was iterated separately for

each age group and region. While being analyzed in the

results themselves, these anomalous ARHAs are also used

in the calculation of spike days.

Calculation of Spike Days in ARHAs for NYC

Due to very small daily ARHA sample sizes in all other

regions outside of NYC, spike days in ARHAs are only

analyzed for NYC. Spike days in ARHAs are determined by

finding the standard scores (z-scores) of NYC’s anomalous

ARHAs that are greater than 1.5. Several permutations were

assessed, and the 1.5 threshold was chosen to preserve an

adequate sample size of spike days in each season, while

also representing a realistically substantial 1-day increase in

ARHAs that might stress the healthcare system. The spike

day metric is expressed as the SSDR of the number of actual

spike days over the number of expected spike days.

Although not explicitly shown in the results, expected spike

days are statistically important as a baseline from which the

SSDR calculation can be made and are based on the sea-

sonal frequency of each WT. Expected spike days are cal-

culated as

Ews ¼
Ps

Ds
Dwsð Þ

where Ews is the expected number of spike days for WT w

in season s, Ps is the total number of spike days in season s

(summed for the entire time series), Ds is the total number

of days in season s (summed for the entire time series), and

Dws is the total number of days classified into WT w for

season s (summed for the entire time series). This calcu-

lation is repeated for each lag day in each season.

Incorporation of a Lagged Effect

One of the major complicating factors in assessing the

effect of weather on ARHAs is that of time—or a lag effect.

That is, weather conditions that may be related to increased

admissions might occur up to 3 or more days before a

patient goes to the hospital. Ehara et al. (2000) found that

the mean time of onset of asthma symptoms was 1.8 days
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before patients were admitted to the hospital. Thus, finding

a relationship between weather and asthma admissions

must incorporate a lag into the analysis.

To account for this effect, 1-day through 6-day lags

(Lag 1–Lag 6) were created for each station’s SSC WT in

order to find the WT that occurred up to 6 days before-

hand. Previous research has suggested that the majority of

increases in ARHAs in relationship to WTs occurred any-

where from 1 to 3 days after a cold and dry WT in the

autumn (Jamason et al. 1997)—the peak of the ARHA

season, or that an asthma epidemic was preceded by the

passage of a cold front 1–3 days beforehand (Goldstein

1980). Consideration of these studies, along with pre-

liminary results (Figure 2) led to the focus being on the

summed number of anomalous ARHAs occurring in this

1- to 3-day lag period (for the anomalous ARHA indicator)

after the occurrence of a WT (hereafter referred to as

3dARHAs). This number is expressed as a percent of the

raw total daily ARHAs for each region and season multi-

plied by 3.

Statistical Analyses

The one-sample difference of means t test was employed to

evaluate statistically significant changes in 3dARHAs (dif-

ference from zero) by WT for each region and age group.

Two-sample difference of proportion tests were used to

examine whether the proportion of spike day occurrences

for each WT was significantly different than the proportion

of all days in each WT for each season in NYC—effectively

testing the significance of the difference between actual and

expected spike days (or the SSDR). Chi-square tests were

also used to find whether the actual number of spike days

was significantly different from the expected number of

spike days across a season—effectively determining whether

the amount of partitioning of spike days among WTs was

significant. That is, if spike days were equally frequent

across all WTs in a season, then weather typing would not

be a very useful measure to gauge ARHA spike days.

However, if spike days only occurred when one or two WTs

were present, then WTs would be a good measure of

increased spike day occurrence. Significant results at the

P � 0.05 level are the main focus of the discussion, though

near-significant (P � 0.10) results are also highlighted.

To account for temporal autocorrelation, all t tests

with the 3dARHA indicator were performed with an

effective sample size, whereby the sample size was reduced

based on the following equation (from von Storch and

Zwiers 2003):

N 0 ¼ Nð Þ 1� r

1þ r

where N 0 is the effective sample size, N is the original

sample size, and r is the Pearson correlation coefficient at

lag1 for each variable. Spike days, however, were calculated

from anomalous ARHAs (which have r < 0.09 in all cases)

rather than 3dARHAs, and thus, significance testing for the

SSDR was not adjusted for temporal autocorrelation.

In an effort to create a larger sample size representing

the entire state (outside of NYC), a NYS aggregate was also

computed by summing all 3dARHA anomalies from the six

regions (excluding NYC) for each WT within each season.

Although additional aggregates were also created for dry

(DP, DM, DT) and moist (MP, MM, MT) WTs, the results

are not displayed and are only discussed where relevant.

RESULTS

Seasonal Trends and Demographics of Asthma

Admissions

Among the 518,164 cases that contained county of resi-

dence and age data for the admitted patient, 82% of all

admissions in the state were from the NYC region. Seasonal

trends in the two age groups exhibit many similarities that

follow the meteorological seasons quite well (Figure 3).

ARHAs in both age groups demonstrate a trough in the

summer before a sharp increase in September and October,

along with a more muted rise in admissions in March and

Figure 2. Effect of lag on anomalous ARHA admissions 0 to 6 days

after the occurrence of a Dry Polar (DP) weather type in the New

York City (NYC) region during three autumn months.
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May. The main differences between the age groups are the

opposing trends displayed in December—while the U18

age group experiences a slight drop in admissions, the O18

age group exhibits an increase from November to

December. There is also a difference in the relative steep-

ness of the autumnal increase between the two age

groups—in the U18 age group, the number of AHRAs in

September is more than double those in August, while in

the O18 age group, September ARHAs are only 25% more

than August admissions. Overall trends by age (Figure 4)

indicate that ARHAs are more common in males until

about age 15, with female ARHAs becoming more common

thereafter. Overall county-by-county spatial patterns of

asthma admissions are displayed in Figure 5—with only

the NYC region showing any spatial clustering.

Spike Days in ARHAs in the NYC Region

The analysis of spike days in admissions (Tables 1, 2) yields

more significant results than the analysis of anomalous

ARHAs (Tables 4, 5). In the U18 age group, the most

consistent results are for the autumn DP WT, which shows

an above average number of spike days in ARHAs for Day0

through Lag6 after occurrence; including Lags 3, 4, and 6,

where the difference is significant (Table 1). Winter DP

also shows a substantial increase in spike days for all but

Lag1—including on Lag 6, which is significant. Although

infrequent in summer (less than 3%), when MP does occur

in this season, it yields high SSDRs, especially at longer lag

times. Summer MM has a similar affect, though is much

more frequent. The largest increase in spike days occurred

with summer DT on Lags 2 and 3, both accounting for an

SSDR of over 3.3 (P < 0.001), although total spike day

occurrence was only six days. Only about 2.0% of summer

days qualified as spike days of ARHAs (22 of 1104), which

most likely led to many large SSDRs, despite low overall

occurrence. Other seasons varied considerably in the rela-

tionship between WT and spike days among the U18 age

group.

In looking at the spike days for the O18 age group for

NYC, results are considerably different from the younger

age group. The most consistent results in the older age

group are for the spring DT WT 3–5 days after occurrence

(Table 2); each of which has a SSDR of at least 2.1. Overall,

summer WTs show the most similarity to the U18 age

group, as summer DT exhibits increases in spike days from

Day 0 through Lag 4, with Day 0 and Lag 1 being nearly

significant (P � 0.10). Summer MM and summer MP also

show substantial results at longer lag times, much like the

U18 results. In autumn, DP corresponds to an increase in

spike days from Day 0 to Lag 2, although only Lag 1

(SSDR = 1.93) is significant.

Chi-square results in Table 3 detail the discriminatory

power of spike days in being partitioned across all WTs by

lag day within a season. Using the Chi-square test with the

U18 age group, summer Lag2; summer and autumn Lag6;

and spring, summer, and autumn Lag3 showed significant

differences in actual spike day occurrence versus expected

spike day occurrence across all the WTs as a whole

(Table 3). With the O18 age group, only spring Lag4

showed a significant difference in observed spike days

versus expected across WTs.

Anomalous Admissions (3dARHAs)

Though the 3dARHA analysis does yield some large

anomalous percentages, it is important to note than none

are significant at a = 0.05. In the U18 age group in autumnFigure 4. Male and female NYS ARHAs by age (1995–2006).

Figure 3. Seasonal trends in NYS ARHAs for the two age groups

used in this research (monthly sums 1995–2006).
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in the NYC region, of the seven WTs, only DP and DT have

substantial anomalous mean 3dARHAs, at +2.6 and +3.3%,

respectively (Table 4). After aggregating all dry WTs

together (DM, DP, and DT), there is a positive 0.9%

anomaly in autumn (not shown) for NYC. Of the other

three seasons, only summer has any WTs with any note-

worthy anomalous 3dARHAs in this region, with DP, DT,

and MM accounting for -3.4, +4.1, and -3.8% anomalous

admissions, respectively.

The aggregate of the rest of the state for the U18 age

group is rather different from NYC. In autumn, only the

MM type has a positive anomaly greater than 0.5%,

standing in stark contrast to the DP and DT types in NYC.

Only three WTs showed consistent positive anomalies

throughout most of the state (at least 6 of 7 regions) in the

U18 age group—spring MM, autumn DM, and winter MT.

Despite the sample size in the NYC region, generally

the 3dARHA trends from the U18 age group are not

consistent with those in the O18 age group (Table 5). The

lone exception is autumn DP, which has substantial

anomalous 3dARHAs with a mean of +2.1%. The trend

noticed above (toward drier air corresponding to an in-

crease in admissions in autumn) does hold true for the

O18 age group in the region, as the aggregate of the three

dry WTs are associated with a positive anomaly of 0.8%,

and the aggregated moist WTs account for a negative

anomaly of 1.1% in autumn for this age group as well. The

summer and spring seasons have no markedly positive

changes. While the winter shows a 5.1% increase in

ARHAs for the DT WT and a 2.0% increase for the winter

MT WT, both DT and MT occur quite infrequently in the

winter season.

Outside of winter DT and MT, NYS as a whole shows

little similarity between age groups or with the NYC O18

results. Besides these types, for this age group, there are

three WTs that showed consistent positive anomalies

throughout most regions of the state: summer DT, autumn

DM (as in the U18 age group), and winter DM.

DISCUSSION

Overall, these results show a markedly varied spatial rela-

tionship between ARHAs and WTs. While one of the ori-

ginal goals of the research was to examine any type of

spatial homogeneity between the relationship of WTs and

asthma admissions, small daily sample sizes due to multiple

stratification likely led to these varied spatial results. One of

the primary results is that while examining the relationship

of anomalous 3dAHRAs to WTs yielded poor results in

NYC (and overall), results with spike days in ARHAs were

clearer.

Figure 5. Mean annual ARHA rate

by county in NYS. Rate is calculated

as the mean total number of

admissions per 100,000 population

per year.
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The most substantial result is that DP in autumn is

associated with increases in asthma admissions—an out-

come that is in agreement with previous literature (Jama-

son et al. 1997; Nastos et al. 2006). However, this result was

most apparent in the NYC region, and did not hold true

across all seven regions examined, or in an aggregate of the

rest of NYS. Spike days in asthma occurred with greater

than average frequency up to 2 days after the occurrence of

the autumn DP type in the O18 age group and up to 6 days

after occurrence with the U18 age group as well. These

results coincide with biological research which has shown

that cooler and drier conditions can decrease air flow in the

lungs of asthmatics (Mathur et al. 1993); though ARHAs in

the current study include both asthmatics and non-

asthmatics admitted for asthma. Jamason et al. (1997) also

found that three cool/cold and dry winter WTs showed

Table 1. Standardized Spike Day Ratios (SSDRs; Observed Spike

Days Over Expected Spike Days) for the U18 Age Group by Lag

Day (Rows) and Weather Type (Columns) for Each Season in the

NYC Region (1 is Considered Normal)

DM DP DT MM MP MT TR

Spring

0 1.20 0.94 0.58 0.71 0.81 1.46 0.97

1 0.86 1.22 1.15 0.87 1.02 1.07 1.06

2 0.94 1.29 0.28 1.04 1.02 1.25 0.74

3 1.20 0.82 0.84 0.65 0.80 0.42 1.91

4 1.17 0.88 1.38 1.06 0.91 0.58 0.95

5 0.90 1.16 0.81 0.98 1.15 0.58 1.25

6 0.90 1.16 0.81 1.30 0.95 0.44 1.14

Summer

0 1.30 1.50 1.14 0.49 3.14 1.00 0.00

1 1.52 0.74 0.56 0.24 0.00 1.25 1.34

2 0.88 0.00 3.35 0.48 0.00 1.13 0.67

3 0.44 0.71 3.31 0.48 0.00 1.13 1.36

4 0.87 0.70 0.55 1.47 1.48 1.01 0.67

5 0.65 1.36 0.00 2.17 2.79 0.52 1.34

6 0.88 2.68 0.00 1.69 3.67 0.52 0.00

Autumn

0 1.10 1.03 0.66 0.66 1.54 1.24 0.72

1 0.94 1.24 0.88 0.99 1.28 1.02 0.91

2 0.95 1.05 1.10 1.22 1.67 0.73 1.04

3 0.95 1.73 1.10 1.12 0.32 0.59 0.99

4 1.10 1.48 1.10 1.05 1.00 0.57 0.71

5 1.13 1.37 0.44 1.15 1.00 0.59 0.80

6 0.98 1.54 0.22 1.14 1.04 0.50 1.39

Winter

0 1.07 1.05 1.54 0.95 0.64 1.09 0.90

1 1.06 0.90 0.82 0.95 0.81 1.01 1.25

2 0.95 1.15 0.92 1.03 1.29 0.49 0.80

3 0.80 1.22 1.98 0.76 0.97 1.67 1.00

4 1.02 1.28 0.00 0.85 0.97 0.72 0.79

5 1.13 1.13 1.15 0.52 0.81 1.38 0.89

6 0.86 1.49 1.15 0.69 0.65 0.70 1.12

Bold values indicate significant at the P < 0.05 level and italicized values

indicate near-significant (P < 0.10).

Table 2. Standardized Spike Day Ratios (SSDRs; Observed

Spike Days Over Expected Spike Days) for the O18 Age Group by

Lag Day (Rows) and Weather Type (Columns) for Each Season in

the NYC Region (1 is Considered Normal)

DM DP DT MM MP MT TR

Spring

0 0.74 1.25 0.00 1.43 0.70 1.33 1.08

1 0.65 1.54 0.58 0.80 1.37 1.09 1.08

2 1.00 0.92 0.57 1.14 1.14 0.56 1.29

3 1.27 1.06 2.28 0.33 0.23 0.85 1.51

4 1.27 1.34 2.23 0.33 0.46 1.76 0.21

5 1.00 0.88 2.19 1.66 0.23 0.89 0.64

6 1.00 0.59 1.64 0.49 1.44 0.89 1.68

Summer

0 1.19 0.41 1.88 0.54 0.86 0.89 1.77

1 0.84 1.22 1.86 1.06 1.73 0.96 0.00

2 0.96 0.80 1.23 0.53 1.67 1.31 0.37

3 0.97 0.78 1.21 1.33 0.00 1.11 0.00

4 0.60 0.38 1.21 0.94 1.62 1.25 1.10

5 0.83 0.37 0.61 1.19 2.30 1.07 1.10

6 0.61 1.47 0.91 1.46 2.69 0.79 0.73

Autumn

0 0.92 1.28 1.63 1.28 1.53 0.91 0.36

1 0.97 1.93 1.08 0.58 1.58 0.69 1.04

2 0.83 1.46 1.08 1.04 0.82 0.68 1.55

3 0.98 0.66 1.63 1.04 3.17 0.78 1.05

4 0.94 0.66 1.08 1.25 1.65 0.98 1.06

5 1.00 0.51 0.54 1.13 0.00 1.46 0.90

6 0.94 0.69 1.08 1.01 1.72 1.04 1.27

Winter

0 1.12 0.96 0.87 0.88 0.54 1.85 0.89

1 1.12 1.02 0.00 0.88 1.46 0.57 0.77

2 0.95 1.36 1.04 0.68 1.09 1.37 0.52

3 1.12 1.09 2.24 0.58 1.27 0.27 1.01

4 1.15 0.93 0.00 0.77 0.91 0.27 1.53

5 0.98 1.22 1.30 0.58 1.10 0.26 1.39

6 1.18 1.28 1.30 0.69 0.92 0.26 0.63

Bold values indicate significant at the P < 0.05 level and italicized values

indicate near-significant (P < 0.10).
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significant increases in admissions 1–2 days after occur-

rence in NYC. While this result held true for winter DP

spike days for the O18 age group in this research, only Lag

2 was statistically significant, while for the U18 age group

the impact of winter DP on spike days in ARHAs was

significant only at a longer lag. Other regions of NYS did

not exhibit a significant relationship between anomalous

ARHAs and winter DP in either age group.

While the inconsistent spatial relationship noticed

between WTs and asthma admissions in all seasons could

be partially attributable to sample size issues in these

regions, previous research in NYS has shown that access to

medical care and the differing socio-economic status of

various zip codes can impact asthma admissions rates as

well (Lin et al. 1999)—potentially confounding any rela-

tionship between ARHAs and WTs in these regions. Dif-

fering concentrations of a variety of pollutants and/or

allergens that are associated with a particular WT in dif-

ferent regions may also lead to inconsistent spatial results.

In comparison to previous synoptic literature looking at

NYC (Jamason et al. 1997), with the exception of the general

agreement with the autumn DP type, the results herein differ

quite substantially. In their research, no summer WTs

showed significant associations to increased admissions. In

the current research, however, one of the most consistent

results found is that some summer WTs—primarily DT (hot

and dry)—were associated with increased asthma admissions

and more spike days, especially in the U18 age group in NYC

and the O18 age group throughout the rest of NYS—a result

consistent with research from Hanna et al. (2011) in North

Carolina (though they did not stratify by season). A possible

reason for this is due to this WT’s association with increased

pollen levels and increased levels of a variety of pollutants—a

known trigger for asthma exacerbation (Hanna et al. 2011).

However, Lin et al. (2009) find that extreme heat (greater

than 32�C) by itself is a significant risk factor for increased

asthma admissions in NYC. Another possible reason behind

the significant summer results herein is that the number of

daily ARHAs and the number of spike days in summer are

both substantially less than what occurs in most other sea-

sons, in essence, making small absolute differences become

large percentage differences. Summer MP and summer MM

also exhibited strong associations to spike days in ARHAs at

extended lag times (4–6 days) in both age groups. The fact

that there is such consistency between age groups for the

summer season (when school is not in session) more so than

other seasons, supports results from Lin et al. (2011) and

Johnston and Sears (2006) that suggest the timing of the

school year and the associated asthma triggers (indoor

allergens, pet dander, pollutants, etc.) that are suddenly

introduced to children in the classroom may play a role in the

autumnal increase in ARHAs (in summer, both adults and

the school-aged population are presumably subjected to

more similar environmental conditions—while in other

seasons, this is not the case).

The conclusions of this study must be understood in

the context of its limitations. Sample size was a limiting

factor in two ways. First, despite a seemingly large total

sample size (over 518,000 cases), the average number of

ARHAs was fewer than 4 per day for the O18 age group,

and fewer than 2 per day for the U18 age group for every

region except NYC (Table 6). In some seasons, this likely

created substantial anomalous admissions and/or a spike

day out of a day when only one extra person was admitted

(hence the reason for selecting NYC as the only region to

examine spike days). While perhaps statistically relevant, in

a practical sense, this is unlikely to result in an increased

burden to the local medical facilities. This said, for a variety

of reasons, the vast majority of ARHA cases are from dense

urban areas—nearly 82% in this research—and thus, the

results found herein may be quite relevant for a large

Table 3. P Values for Chi-Square Test to Test Differences in

Observed Spike Days from Expected Spike Days Across All

Weather Types in Each Season (Columns) for Each Lag Day

(Rows) for the NYC Region for U18 and O18

Spring Summer Autumn Winter

Under 18

0 0.613 0.390 0.340 0.959

1 0.966 0.496 0.962 0.979

2 0.661 0.038 0.657 0.868

3 0.036 0.038 0.033 0.487

4 0.846 0.938 0.157 0.743

5 0.845 0.051 0.163 0.610

6 0.649 0.009 0.018 0.273

18 and over

0 0.563 0.315 0.577 0.659

1 0.611 0.412 0.222 0.709

2 0.950 0.555 0.596 0.445

3 0.116 0.527 0.251 0.410

4 0.040 0.688 0.935 0.397

5 0.204 0.625 0.504 0.414

6 0.366 0.198 0.951 0.391

Bold values indicate significant at the P < 0.05 level and italicized values

indicate near-significant (P < 0.10).
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percentage of ARHA cases. Second, due to inherent sea-

sonality in different WTs, effective sample sizes in statistical

testing (where N was the number of days in each WT by

season) were sometimes quite small.

It should also be noted that in some seasons for each

age group the issue of multiple comparison testing may also

need to be taken into consideration when interpreting the

probability of the significant spike day results being due to

random chance. However, the a priori knowledge of the

fundamental relationships between weather and asthma

discovered in previous research does help to substantiate

some of these results.

Table 4. Average Anomalous ARHAs Summed for the U18 Age Group for the 1- to 3-Day Period After Air Mass Occurrence

(3dARHAs) as a Percent of the Raw Average for Each Season and Each Region (3-DAY AVG)

3dARHAs DM (%) DP (%) DT (%) MM (%) MP (%) MT (%) TR (%) 3-DAY AVG

Spring

NY City 0.4 0.8 0.5 0.3 -0.1 0.4 0.1 121.1

ALB -0.4 0.1 -4.5 11.4 -0.8 3.2 -3.0 5.6

BUF -0.3 -2.8 11.6 7.7 0.3 -10.2 3.2 5.9

WAT 4.7 -5.6 -1.0 3.7 3.2 -0.1 -4.4 4.0

BIN -4.1 -3.9 14.8 0.5 -4.4 25.9 -1.6 2.2

ROC -2.5 -1.5 6.4 4.3 2.9 5.1 -4.4 3.7

MAS -6.9 0.1 0.9 1.0 -5.3 18.8 2.6 0.9

NY State -0.1 -0.4 0.7 1.0 0.1 0.2 -0.2 22.3

Summer

NY City 0.5 -3.4 4.1 -3.8 -3.7 0.2 -2.4 59.2

ALB 1.5 -2.3 -2.3 -9.4 7.8 2.8 -5.1 2.6

BUF -4.6 1.0 3.5 -4.9 1.4 2.7 0.1 3.3

WAT 4.6 -10.3 8.5 4.9 -3.8 -5.1 0.1 2.1

BIN 2.5 -3.6 -21.8 0.1 1.0 1.6 -14.9 1.1

ROC -4.3 3.2 24.2 3.0 -3.1 -1.5 -6.6 2.0

MAS -6.8 -5.2 -26.6 8.0 -7.4 3.0 16.9 0.4

NY State -0.1 -0.3 0.3 -0.2 0.0 0.1 -0.5 11.5

Autumn

NY City 0.2 2.6 3.3 -0.4 -1.4 -0.6 -1.0 170.6

ALB 0.0 3.0 7.8 -3.2 -2.2 2.9 1.8 7.7

BUF 1.4 1.7 -4.4 6.7 -5.4 -2.3 -3.8 9.0

WAT 1.5 1.7 2.7 1.8 -2.8 -0.5 -8.6 5.7

BIN 2.2 -2.2 1.6 2.1 4.5 -4.1 -3.7 3.1

ROC -2.0 -1.5 -5.8 6.2 -0.3 1.0 -0.1 5.5

MAS 2.1 -1.4 14.0 2.4 1.6 -10.1 -2.5 1.2

NY State 0.1 0.2 0.3 0.5 -0.4 -0.1 -0.5 32.2

Winter

NY City -0.7 -0.4 -0.4 -0.1 0.0 0.8 0.3 127.0

ALB 2.5 -1.3 -18.8 0.5 -2.4 0.5 0.6 5.7

BUF -0.8 -0.8 -1.2 5.0 -2.7 5.5 -5.5 5.6

WAT -0.9 -0.4 40.7 -3.4 2.8 3.9 5.8 3.6

BIN -3.2 0.7 -16.8 3.6 1.1 1.5 -3.8 2.3

ROC -1.2 -2.7 74.3 2.9 -4.7 11.4 2.9 3.6

MAS 4.2 4.0 – -8.1 -1.2 -44.1 -0.1 0.8

NY State 0.0 -0.1 1.1 0.3 -0.3 0.6 0.0 21.6

NY State region is all regions aggregated except for the NY City region. Positive values indicate positive anomalies and negative values indicate negative

anomalies.
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The aforementioned effects of lag present another

complicating factor. In an effort to capture the most sub-

stantial anomalous ARHAs, the present study purposely

chose an ‘‘ideal lag period’’ (from 1 to 3 days after WT

occurrence; based on initial examination and previous

research) in order to evaluate the ARHA response to a WT.

While choosing one ‘‘ideal lag day’’ might help better

identify a relationship, it was discovered that the peak

period/day of anomalous admissions after a WT occurs

differs for each season/month, each region, and each WT,

and would likely result in even more heterogeneous results

spatially, and less intuitive results in a qualitative manner.

On the opposite end, the inclusion of too many lag days

into a single period may effectively cancel out positive and

Table 5. Average Anomalous ARHAs Summed for the O18 Age Group for the 1- to 3-Day Period After Air Mass Occurrence

(3dARHAs) as a Percent of the Raw Average for Each Season and Each Region (3-DAY AVG)

3dARHAs DM (%) DP (%) DT (%) MM (%) MP (%) MT (%) TR (%) 3-DAY AVG

Spring

NY City 0.1 0.4 0.0 -0.7 -0.3 -0.4 1.2 174.0

ALB 1.6 -0.6 -2.6 1.3 -1.8 0.8 2.6 10.0

BUF -0.6 -2.5 6.0 -1.3 -2.9 10.4 -1.0 10.5

WAT 0.3 -0.4 9.3 1.1 -2.0 -3.5 -0.5 7.8

BIN 2.5 -3.3 -8.9 3.9 2.8 -6.0 3.4 4.4

ROC -2.1 -0.2 -2.3 -6.1 3.0 8.3 1.0 8.9

MAS -0.5 -3.7 -3.6 3.4 1.9 7.4 -4.7 2.7

NY State 0.0 -0.2 0.0 -0.1 -0.1 0.7 0.1 44.3

Summer

NY City -0.2 -1.8 1.6 -1.5 -0.2 0.8 -2.1 134.4

ALB -2.7 -1.9 9.8 -0.9 3.7 1.0 -0.8 6.7

BUF -2.8 3.6 22.9 -1.0 -5.7 2.7 -5.5 7.2

WAT 0.9 -1.1 11.2 -0.4 -8.0 3.9 -0.4 5.2

BIN -1.9 2.6 2.8 0.1 -12.7 -1.4 8.6 2.8

ROC 2.4 -6.5 23.0 0.8 -5.1 -0.5 -5.3 6.3

MAS -3.2 -14.8 5.5 -1.4 2.4 3.2 9.9 1.7

NY State -0.2 -0.3 2.1 -0.1 -0.6 0.3 -0.3 29.9

Autumn

NY City 0.4 2.1 0.7 -1.3 0.7 -1.1 0.7 175.9

ALB 0.4 0.6 -3.4 0.9 1.9 -1.0 -3.7 9.8

BUF 3.2 -4.3 5.1 1.7 -3.7 1.7 0.5 9.3

WAT 4.2 -1.3 5.4 -1.8 -4.5 -5.5 0.9 7.1

BIN -1.8 1.4 -6.2 4.0 -0.3 3.1 -0.5 3.9

ROC 0.8 0.9 2.2 -1.2 -3.7 2.7 3.2 8.2

MAS 1.1 -2.5 3.2 0.0 -2.4 2.4 2.0 2.3

NY State 0.2 -0.1 0.0 0.1 -0.4 0.1 0.0 40.7

Winter

NY City -1.1 0.4 5.1 0.1 1.4 2.0 -1.3 207.6

ALB 0.8 -1.0 7.2 -2.3 2.1 3.2 -0.8 12.1

BUF 0.6 -0.7 9.2 0.1 -0.1 5.1 1.9 11.4

WAT 8.4 -0.6 9.8 -0.5 1.0 1.5 -4.1 8.4

BIN 0.3 0.3 -6.2 -0.7 -0.4 6.7 -2.1 4.8

ROC 1.1 -0.9 19.8 3.2 -0.4 0.6 -2.7 10.0

MAS 5.2 0.0 - 0.7 -3.6 13.3 1.2 2.9

NY State 0.3 -0.1 1.2 0.0 0.1 0.6 -0.2 49.6

NY State region is all regions aggregated except for the NY City region. Positive values indicate positive anomalies and the negative values indicate negative

anomalies.
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negative anomalies. Future research on this topic will have

to account for these issues with lagged ARHA responses to

WTs. The issue of temporal autocorrelation when exam-

ining anomalous ARHA data merited the examination of

spike days in the current research, which may prove to be a

more valuable avenue of investigation in future studies.

This study also aggregates results by seasons instead of

months (or a shorter time period) in order to have a

sample size large enough to attain some substantial results

in regions other than NYC. So while the results herein are

analyzed by season, WT-to-ARHA relationships likely vary

on monthly or shorter time scales as well, and deserve

future attention. Future research may also benefit from

looking at certain meteorological variables within a WT (as

examined in Jamason et al. 1997). As drier WTs in general

were found to be related to increased admissions in this

study, investigating the role of the within-type humidity

levels of DP, DT, or DM WTs in affecting ARHAs could

prove useful in further explaining ARHA variability.

CONCLUSIONS

The utilization of synoptic WTs in the present study

allowed for the analysis of the entire weather situation to

which an individual is exposed, as opposed to just indi-

vidual weather variables. Among other significant results,

cold and dry autumn WTs, along with a variety of summer

WTs at different lags (including a hot and dry type) were

associated with spikes in ARHAs in NYC. Consistent, but

non-significant, positive anomalies in admissions were

related to these same types across NYS as a whole, though

results differed between age groups. While total anomalous

ARHAs were examined as well, results were less conclusive

than with spike day analyses. This research also highlights

the need for further examination of the relationship

between synoptic WTs and asthma admissions in non-

urban settings.

Although synoptic climatological methods are becom-

ing an increasingly valuable tool for climate change impacts

research (Sheridan and Lee 2010; Lee and Sheridan 2012),

before accurate future projections of changes (in relation to

climate change) in ARHAs can be made, further research

still needs to be undertaken to better understand the asso-

ciation between WTs and asthma admissions across a

broader spatial scale. With contemporary forecasting

capabilities, as was suggested by Jamason et al. (1997),

ample warning can be provided to public health officials in

these cities to prepare for an increase in admissions and

increased stress on the system, while the susceptible popu-

lation can also take appropriate measures in order to

decrease their exposure to adverse environmental conditions.
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